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1 Introduction
This deliverable reports on the replication challenge activity realised within the DisAI 
project. Its original aim was to organise activity focusing on early stage researchers 
(ESRs), primarily focusing on doctoral students. By conducting a replication study under 
the mentorship of a senior researcher, the aim was to get students better acquainted 
with the state of the art in their field of study and gain practical research experience.

The replication challenge was organised from October 2023 (M11) to April 2024 (M17). 
Together, 11 students were invited to participate, with 9 students finishing the challenge. 
Besides PhD students, also master students were involved, addressing both the actual 
lower number of PhD students in KInIT and collaborating academic institutions (due to the 
overall decrease of interest in PhD study) that was anticipated at the time of project 
proposal writing, and lack of interest in participation.

The activity culminated with a 1-day in-person workshop in Bratislava, during which the 
ESRs presented the results of their work. The event was enriched by an invited lecture 
from Rafael Tolosana Calasanz from the University of Zaragoza, Spain, who addressed the 
overall phenomenon of reproducibility in AI and discussed results achieved in the Horizon 
Europe AI4Europe project1. The participants benefited from feedback and further 
discussion on their presented work provided by additional invited experts invited as 
guests to the workshop.

The result of students’ work is attached to this deliverable as Appendix A.

1 https://www.ai4europe.eu/
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2 Organisation
The activity organisation started intensively in June 2023 (M7), setting the schedule for 
autumn and winter 2023/2024, identified as suitable due to the standard academic year 
organisation. Originally, three mentors were involved, with 12 research papers identified as 
suitable for replication. 

Call for participation was issued in October 2023 at the DisAI project web site2, with 
expected duration of replication studies from November 2023 to January 2024. As a lower 
number of PhD students had been studying in KInIT than expected at the moment of 
project writing (the original aim was to include at least 10 early stage researchers), we 
individually approached 7 departments3 from Slovakia and Czechia with focus on AI to 
cover and attract a wider audience of potential PhD student participants.

By the end of October 2023, only 4 PhD student participants applied despite the focused 
promotion. To increase the number of participants, and to fulfil the objective of this 
activity, we decided to reach out to master students at the Faculty of Mathematics, 
Physics and Informatics, which is the only faculty in Slovakia, where Natural language 
processing course is included in the curriculum. 

We re-issued the call for participation in November 2023 and 10 more students expressed 
interest in the replication challenge. We selected 7 of them to participate based on their 
topic preference, mentoring capacity and motivation letters they supplied. A new 
schedule was introduced for this run. One mentor was added by CERTH and one was 
replaced by KInIT due to the contract change. 

Finally, the following mentors were involved in the replication challenge:

● Dr. Simon Ostermann, Lab Manager, Senior Researcher, Group Lead “Data and 
Resources”, DFKI, o�ering 4 papers and a wild-card option4, covering the topic of 
Parameter-E�cient Multilingual Natural Language Processing.

● Dr. Stefanos Papadopoulos and Dr. George Karantaidis, AI Researchers at 
Information Technologies Institute, CERTH, o�ering 6 papers and a wild-card 
option, covering the topic of Multimodal AI for Misinformation Detection.

● Dr. Matúš Pikuliak, Senior researcher, NLP Team, KInIT, o�ering 2 papers and a 
wild-card option (for Run #1), covering the topic of Multilingual NLP.

● Assoc. prof. Michal Gregor, Expert researcher, NLP Team, KInIT, o�ering 2 papers 
(for Run #2), covering the topic of explainability for vision-language models and 
prompting for passage retrieval in large language models.

4 A participant was allowed to select another paper for replication study, if approved by the mentor.

3 Department Of Computer Graphics And Multimedia, Faculty Of Information Technology, Brno University of 
Technology, Brno; Division of Cognitive Science and Division of Artificial Intelligence, Faculty of Mathematics, 
Physics and Informatics, Comenius University, Bratislava; Department of Electronics and Multimedia, Center 
of Intelligent Technologies and  Telecommunications and Center of Intelligent Technologies, Faculty of 
Electrical Engineering and Informatics, Technical University of Kosice, Kosice; Institute of Computer Science 
and Mathematics, Faculty of Electrical Engineering and Information Technology of Slovak University of 
Technology in Bratislava;

2 https://disai.eu/replication-challenge/ 
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A mentor from the University of Copenhagen was not involved in the activity due to the 
personnel unavailability. This did not a�ect the outcomes of activity.

At the student side, the 11 early stage researchers participated in the replication 
challenge, 4 females and 7 males): 3 PhD students from KInIT, 1 PhD student from 
Technical University of Kosice, 7 master students from Comenius University, Bratislava. 
The replication challenge lasted until February 7th (Run #1) and April 11th (Run #2). During 
the process, two students from Run #2 dropped o�. Together, 9 reports were submitted 
and presented at the final event: The Reproducibility and Replicability Workshop, 
organised on April 22th in Bratislava (see section 3 Final workshop).

Selected Research Works for Replication

Parameter-E�cient Multilingual Natural Language Processing (Dr. Simon Ostermann)

The papers selected for this track of the replication study evolve around e�cient 
methods for various tasks of natural language understanding, with strong applications 
and relevance for multilingual use cases. The selected papers present approaches to 
enhancing the parameter e�ciency, data e�ciency,  and e�ectiveness of language 
models across multiple languages without necessitating extensive computational 
resources or complete model retraining. Each study introduces methods that are 
especially pertinent to managing the complexity and diversity inherent in multilingual 
contexts. Two papers present basic methods for parameter-e�cient NLP, Adapters and 
Prompts, and two papers present more advanced modelling techniques based on soft 
prompts.

● BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding5 - This paper builds the foundation for most of modern NLP, 
introducing one of the first pretrained large language models. This study was 
o�ered to less experienced students as an alternative for replication. 

● Parameter-E�cient Transfer Learning for NLP6 - This study introduces 
Adapters, a parameter-e�cient learning technique, meaning they achieve high 
performance while modifying a minimal number of parameters in pre-trained 
models. Such Adapters can for example be used to finetune multilingual models for 
single languages in an e�cient way.

● The Power of Scale for Parameter-E�cient Prompt Tuning7 - This paper 
discusses the advantages of using prompt tuning, a method where a fixed number 
of parameters (prompts) are trained while the rest of the model remains 

7 Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-E�cient Prompt 
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 
Association for Computational Linguistics, 2021.

6 Houlsby, Neil, et al. "Parameter-e�cient transfer learning for NLP." International conference on machine 
learning. PMLR, 2019.

5 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational 
Linguistics.
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unchanged. The scalability of this approach is shown to be highly e�ective for 
parameter e�ciency. 

● ATTEMPT: Parameter-E�cient Multi-task Tuning via Attentional Mixtures of 
Soft Prompts8 - This paper introduces a method that leverages soft prompts 
combined with attention mechanisms to tune models for multiple tasks 
simultaneously in a parameter-e�cient manner. 

● SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer9 - The 
SPoT technique focuses on adapting frozen models through the use of soft 
prompts and their transferability across tasks.

Projects 1 and 2 reimplemented the BERT paper. Project 3 reimplemented the paper 
“Parameter-e�cient transfer learning for NLP”, Project 4 the ATTEMPT paper and Project 
5 the SPoT paper.

Multimodal AI for Misinformation Detection (Dr. Stefanos Papadopoulos, Dr. George 
Karantaidis)

The papers chosen for this segment of the replication study focus on techniques for 
detecting multimodal misinformation and automated fact-checking through multimodal 
deep learning. These selected papers showcase methodologies across di�erent phases of 
the automated fact-checking process, including evidence retrieval, verification prediction, 
and explanation generation. They leverage cutting-edge deep learning advancements, 
particularly large pre-trained neural networks.

● SpotFake: A Multi-modal Framework for Fake News Detection10 - This paper 
introduces a multimodal framework that utilizes textual and visual features of an 
article to alleviate the challenging task of fake news detection. It employs 
language models, such as BERT,  and the pretrained model VGG-19 to extract the 
textual and visual features, respectively.

● Logically at Factify 2: A multi-modal fact checking system based on evidence 
retrieval techniques and transformer encoder architecture11 - The paper 
addresses the task of automated multimodal fact-checking by utilising: 1) an 
evidence retrieval component that selects the most relevant sentences to the 
claim from the full article, 2) a combination of pre-trained cross-modal and 
unimodal models, and 3) a Transformer Encoder architecture for cross-modal 
veracity. 

11 Zhang, Y., Tao, Z., Wang, X., & Wang, T. (2023). INO at Factify 2: Structure Coherence based Multi-Modal Fact 
Verification.

10 Singhal, Shivangi, et al. "Spotfake: A multi-modal framework for fake news detection." 2019 IEEE fifth 
international conference on multimedia big data (BigMM). IEEE, 2019.

9 Vu, Tu, et al. "SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer." Proceedings of the 
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.

8 Asai, Akari, et al. "ATTEMPT: Parameter-E�cient Multi-task Tuning via Attentional Mixtures of Soft 
Prompts." Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. 2022.

7



● INO at factify 2: Structure coherence based multi-modal fact verification12 - 
The paper proposes an ensemble machine learning approach to tackle the task of 
automated multimodal fact-checking that leverages semantic, lexical and visual 
similarities among the image-text under verification and the external evidence 
(images and articles). 

● End-to-end multimodal fact-checking and explanation generation13 A 
challenging dataset and models - The paper proposes an end-to-end framework 
for three sub-tasks related to automated fact-checking, namely:  multimodal 
evidence retrieval, claim verification, and explanation generation that leverages 
large pre-trained models such as CLIP, Sentence BERT and BERT and BART.

Project 6 reimplemented the SpotFake paper. Project 7 reimplemented the Logically at 
Factify 2 paper.  Project 8 reimplemented the INO at Factify 2 paper. 

Explainability for Vision-Language Models and Prompting for Retrieval (Assoc. Prof. 
Michal Gregor)

This track combines two topics: that of explainability for vision-language models 
(replicating a method based on a very robust indicator, which is also very agnostic of 
models’ architectures) and of prompting/fine-tuning large language models for the task 
of retrieval.

● MM-SHAP: A Performance-agnostic Metric for Measuring Multimodal 
Contributions in Vision and Language Models & Tasks14 – This paper explores a 
robust method for assessing in what proportions a multimodal model uses the 
individual modalities. The approach is based on Shapley values, but adapted for 
vision-language architectures. One considerable advantage of the method is that, 
unlike the majority of explainability methods in deep learning, it is relatively 
agnostic of the model’s particular architecture.

● Scaling Sentence Embeddings with Large Language Models15 – The paper 
considers the use of large language models (LLMs) in computing embeddings 
usable for passage retrieval. It presents ways to implement both: a fully 
prompt-based approach, and an approach, which also leverages fine-tuning. This 
work is very relevant in the sense that modern LLMs exhibit significantly improved 
understanding of natural language when compared to more traditional sentence 
embedding models (generally based on BERT-like architectures). Furthermore, 
modern LLMs also tend to have much larger context lengths, which can be crucial 
in some contexts.

15 Jiang, T., Huang, S., Luan, Z., Wang, D., & Zhuang, F. (2023). Scaling sentence embeddings with large language 
models.

14 Parcalabescu, L., & Frank, A. (2022). MM-SHAP: A Performance-agnostic Metric for Measuring Multimodal 
Contributions in Vision and Language Models & Tasks.  In ACL 2023.

13 Yao, B. M., Shah, A., Sun, L., Cho, J. H., & Huang, L. (2023, July). End-to-end multimodal fact-checking and 
explanation generation: A challenging dataset and models. In Proceedings of the 46th International ACM 
SIGIR Conference on Research and Development in Information Retrieval (pp. 2733-2743).

12 Verschuuren, P. J., Gao, J., van Eeden, A., Oikonomou, S., & Bandhakavi, A. (2023). Logically at Factify 2: A 
Multi-Modal Fact Checking System Based on Evidence Retrieval techniques and Transformer Encoder 
Architecture.
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In project 10, a participant was working on replicating the MM-SHAP paper. A participant 
was working on the scaling sentence embeddings paper in project 11.

Final Schedule

Run #I

● October 4th – Call for Participation
● October 4th – October 20th – Application and ESR-Mentor Matching
● November 2nd – February 7th – Replication Study Realisation
● February 7th – Report submission
● April 15th 9:00 – Review, Camera-ready submission

Run #II

● November 28th – Call for Participation
● November 28th – December 10th – Application and ESR-Mentor Matching
● December 11th – April 11th – Replication Study Realisation
● April 11th – Report submission
● April 18th 12:00 – Review, Camera-ready submission

April 22nd – Final Workshop in Bratislava
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3 Final Workshop
The replication challenge culminated with the 1-day workshop titled “The Reproducibility 
and Replicability Workshop” organised on April 22nd 2024 in Bratislava as a hybrid event.

The overall schedule of the event was as follows:

● 10:00-10:15 Welcome
● 10:15-11:15 Rafael Tolosana Calasanz & Andrea Hrčková: Reproducibility in AI 

(AI4Europe)
● 11:15-12:15 Lunch
● 12:15-13:45 Replication Studies: Part I – PhD students
● 13:45-14:15 Co�ee Break
● 14:15-16:15 Replication Studies: Part II – master’s students
● 16:15-16:30 Goodbye

The programme for the event was set up to attract a wider audience and included the 
invited talk on Reproducibility in AI presented by Rafael Tolosana Calasanz, a distinguished 
researcher from the University of Zaragoza, Spain, who addressed the overall 
phenomenon of reproducibility in AI and discussed results achieved in the Horizon Europe 
AI4Europe project1. Together with Andrea Hrčková from KInIT, they delved into the impact 
of reproducibility in AI research. Andrea identified and addressed key challenges 
encountered by PhD students during replication and reproducibility studies, drawing from 
her own research findings. Rafael introduced essential reproducibility tools within the AI 
on Demand (AIoD) architecture, such as RAIL, REANA, and the catalog. He explored 
actionable strategies for fostering reproducibility within the AI community through the 
AIoD reproducibility process. The aim was to equip researchers with practical insights and 
tools to enhance reproducibility in their work, thereby advancing scientific integrity and 
progress in the field of AI.

The following sessions were dedicated to presentations of replication challenge 
participants. In their presentations, they were instructed to cover the problem statement, 
the original work they were replicating, results and lessons learned. In the discussion (8 
min) following their presentation (12 min), they were provided with additional feedback, 
benefiting of the presence of additional experienced researchers in the auditorium:

● Claudia Borg, expert researcher and senior lecturer from University of Malta
● Marek Suppa, lecturer of Natural Language Processing course at the Faculty of 

Mathematics, Physics and Informatics, Comenius University, Bratislava, Head of 
Data at Sli.do

● Michal Kompan, chief research o�cer and expert researcher at KInIT
● Martin Tamajka, lead research engineer and researcher at KInIT
● Robert Moro, senior researcher at KInIT
● Sebastian Kula, senior researcher at KInIT (online)
● with mentors: Simon Ostermann (DFKI), Michal Gregor (KInIT), George Karantaidis 

(CERTH, online), Stefanos Papadopoulos (CERTH, online)
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4 Mentors Conclusions

Assessment of Participants

Especially the PhD students taking part in the study showed an impressive involvement in 
the tasks set out in the scope of the replication study. 

In particular, students implementing projects 4 and 5 were not only involved in the 
replication, but also engaged in further activities to extend the research done as part of 
the challenge, as well as creative and motivated to experiment beyond what was 
necessary for the study. 

The participant implementing project 3 found it harder to commit the necessary time for 
extensions on the replication study, but in general achieved a satisfactory performance 
during the study. 

The two students that took part and that implemented projects 1 and 2, found it hard to 
commit a larger amount of time into the study due to other duties at university. They also 
found it di�cult to engage with the presented papers because most of them were too 
advanced for them to reimplement the approaches presented. They thus fell back to 
implementing more straightforward experiments on pretrained models. Most of the work 
was done in cooperation between the students, which additionally limits the amount of 
work that each of them was able to put in.

The participant implementing project 6 committed themself to completing their 
replication project despite facing time management issues due to other duties at 
university and some personal issues. The participant replicated the assigned paper, 
compiled the report, and prepared the final presentation. Participant’s determination and 
dedication to overcoming obstacles were evident, showcasing their strong work ethic and 
commitment to the assigned paper. The final outcomes were satisfactory, though there 
was potential for improvement had there been more e�cient time management.

The participants of project 7 and 8 displayed notable dedication in the tasks set out in the 
scope of the replication study. Despite encountering initial challenges, primarily stemming 
from ambiguities in the manuscripts, they swiftly adapted their approaches and achieved 
results that closely mirrored those of the original papers.

Regrettably, the participant of project 9 withdrew from the replication challenge soon 
after confirming their participation, citing personal reasons but also di�culty to keep up 
with the demands of the replication study. 

The participant of project 10 worked on replicating the MM-SHAP paper. They actually 
managed to progress quite far with replicating the implementation of the method itself, 
but then unfortunately decided to abandon the challenge to keep up with their workload. 
Consequently, they did not produce a comparison with the results in the original paper, 
and did not attend the final workshop.

11



The participant of project 11 replicated the “Scaling Sentence Embeddings” paper. The 
participant were committed to the task from the beginning. While they required a 
significant amount of assistance in the initial phase of the challenge, in the later phase, 
having acquired the relevant knowledge and practised the associated practical skills, they 
worked in a completely independent way and managed to achieve good results.

Obstacles and Overcomings

Hardware limitations. We sometimes faced a situation in which hardware was not 
su�ciently available, especially for participants not working at KInIT, such that 
short-notice workarounds had to be identified, a non-ideal situation. We circumvent 
restrictions on hardware on short notice by rolling back to smaller models and smaller 
datasets, concentrating the replication on such simpler parts of the works to be 
replicated. In some cases, the di�culty and complexity of papers was too high for some of 
the participants. In that case, we flexibly assigned less challenging works for the 
replication and also rolled back the complexity of the replication in terms of which toolkits 
were allowed to be used (less low-level, more ready-made Hugging Face methods).

Student motivation. Decreasing student motivation was noticeable in case of master 
participants, primarily due to the less flexible semester organisation. In one such case, the 
participant was willing to replicate the study, but it was perceived as part of a semester's 
coursework and not their top priority. When they faced di�culties, they often allowed 
time to pass without addressing the di�culties promptly. The solution involved active 
engagement from the mentor, who scheduled calls to discuss the code line by line and 
explain the peculiarities of both the paper and the code. This guidance enabled the 
participant to successfully complete the replication. For future replications involving 
students, it is advisable to arrange a more structured and tight schedule. This approach 
can help participants feel more confident and ensure steady progress throughout the 
replication process.

Skill and experience disparity. Due to skill and experience disparities of participants, 
there were gaps in understanding even after discussing the task in detail. This led to the 
first results being highly divergent from the original papers due to misunderstandings and 
mistakes in implementation. To address this, we established a shared code repository 
allowing the mentor to monitor progress or detect mistakes in greater detail and we took 
the time to clarify and ensure that students were fully comprehending various technical 
terms, methodologies and programming frameworks.

Process Retrospective

For the future, it will be helpful to select a range of papers of varying di�culty and to 
openly communicate such di�culty estimations. It will also be helpful to directly discuss 
hardware requirements and possibilities for the participants to access hardware during 
the study. It will also be helpful to formulate clearer suggestions for the mentoring, such 
that it can be ensured that the mentoring schemes work similar across mentors. 
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5 Students Conclusions (Lessons Learned)
Students presentations from the final workshop are available online16:

● Session I (PhD students)
● Session II (Master students)

When preparing final presentations, participants were instructed to include at least one 
slide on lessons learned. We include content from lessons learned slides provided by 
students to illustrate the perception of replication challenge by students.

Participant #1

● Insight into the topic of Adapters
○ new valuable experience
○ knowledge about possible applications of Adapters into future research

● Di�culties with using the paper’s code 
○ the paper was accompanied by hardly legible code for an outsider
○ the original implementation was challenging to reproduce
○ the easier solution was to use publicly available library

● The need for proper documentation for future reproducibility
○ insu�cient documentation and code explanation hampers possible future 

reproduction
○ the coherency of the article as a whole is partially undermined by the lack 

of extensively explained methodology in the form of code

Participant #2

● Don’t trust the code
○ Authors usually submit the code in a hurry and usually just copy everything 

to a single repo and provide none or only a little documentation
○ What is in the paper is sacred (even if it contradicts with the code)

● Custom implementations over public libraries�
○ Gets us a better understanding and a better control
○ But can divide our attention to not so important tasks
○ Overriding methods and contributing to open libraries may be the solution

● Think about reproducibility when doing research
○ “Would you enjoy doing replication study of your own work�”
○ What makes our results reproducible� (stability, environment)

Participant #3

● Evidence retrieval
○ Interesting idea, but there is no direct comparison between other 

approaches such as models for long texts or summarization

16 https://disai.eu/replication-challenge/ 
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○ Not uniformly beneficial
● Explain the architecture of model in detail and not omit anything or let it for the 

readers to decode
○ For example layers, their parameters, random seed and much more
○ Paper should present the model, so the architecture is understandable 

without the code
● Publishing the code should be part of publishing the paper

○ Robustness of models
○ Importance of transparency in research
○ Provides a deeper understanding of the intricacies involved

Participant #4

● Insight into the PEFT methods
○ PEFT methods can outperform full model fine-tuning

● Paper will put up with anything that is written on it
○ Is the information in the paper correct�
○ The di�erences in the paper and in the source code

● Refactoring is important for code understanding, but even more important is to 
remember to publish all the code for other researchers to reproduce the results!

Participant #5

● My code writing  actually isn’t as bad as I thought
● Bachelor thesis was good for something
● It isn’t that bad to submit assignments ahead of time
● This semester would be easier if we got more 2 for 1 deals like this from our 

teachers
● Jokes aside, it was nice to see how people in real world work
● I learned yet a couple new things that I can use in ML
● And I learned that this thing called replicability in science is not for granted

Participant #6

● Timing in life is important
● More communication -> fewer misunderstandings
● GPU is still a scarce resource in 2024
● If you're running a program that's supposed to run for 10+ hours, make sure it 

doesn't stop after any kind of error
● Replication tends to be successful when the paper has 97859 citations on Google 

Scholar

Participant #7

● Importance of reproducibility in science
● Replicating something already done is not as easy as it may seem

14



● New knowledge about creating machine learning models
● That I need to work on my time management

Participant #8

● replicating can be really strenuous and hard
● it should not be taken for granted
● GPU - really scarce resource
● really like this type of  assignments
● it is great to participate in challenges similar to this
● cooperation is the key for better results 
● try to work on my time management and submitting on time

15



6 Conclusions
The replication challenge was a very interesting experience for all the parties involved. 
Despite several obstacles (low interest,  partially caused by lower number of PhD students 
in KInIT than originally expected), we managed to involve 11 young people at the early 
stage of their career to get familiar with research works related to the topics of the DisAI 
project. The activity successfully culminated in a one-day workshop with a participation 
of many experienced researchers. The activity contributed to:

● improved scientific capacity in KInIT – three PhD students from KInIT were involved
● increased number of Slovak research institutions dealing with DisAI topic
● increased awareness on the topics of disinformation combating
● increased visibility of KInIT and the DisAI project
● Increased research competences of 11 participants

An important outcome of the activity is experience with organising replication studies. 
Improvement points identified in the process retrospective will make organisation of such 
activity in the future even better.
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Appendix A: The Proceedings of Replication Studies
The replication study reports submitted by replication challenge participants are included.
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2 German Research Institute for Artificial Intelligence (DFKI),

Saarland Informatics Campus, Germany
viliam.balara@tuke.sk, simon.ostermann@dfki.de, kristina.machova@tuke.sk

Abstract

With the onset of the widespread use of large language models, fine-tuning the pre-trained models
presents an effective transfer mechanism for NLP. However, in the case of downstream tasks,
fine-tuning performs unsatisfactorily due to being parameter inefficient, the main reason being
that an entirely new model trained from scratch has to be created for every particular task. To
counteract this undesirable behaviour, the proposed solution by Houlsby et al. (2019), the adapter
modules, yields increased performance while providing a compact and extensible model, with the
advantageous feature being the need to add only a minuscule sample of trainable parameters.
Thus, new tasks can be effortlessly added without retraining the whole existing model. The
original parameters remain untouched, therefore a high degree of parameter sharing is present.
In the original paper, the effectiveness was demonstrated with the BERT Transformer model
accompanied by the GLUE benchmark as well as 26 diverse text classification tasks. In the
original article, Adapters attained almost state-of-the-art performance in regard to the original
timeframe, while minimally increasing the number of parameters per individual task. On GLUE,
the attained results were within 0.4% of the performance of full fine-tuning, adding only 3.6%
parameters per task. By contrast, fine-tuning necessitates the training of 100% of parameters per
task. In our replication of this research, we will focus on the GLUE benchmark and simultaneously
add additional variations of the BERT model to assess the performance of adapters.

1 Introduction

Transferring already acquired knowledge from pre-trained models has the benefit of strong performance,
especially in the case of NLP tasks (Radford et al., 2018). In the time of the conception of the original
article (Houlsby et al., 2019), BERT, a Transformer network which was trained on substantial text
corpora with an unsupervised loss, attained state-of-the-art performance on text classification as well as
extractive question answering (Devlin et al., 2019). Therefore, our goal is to reproduce the results of the
original paper and include additional experiments to prove the versatility of adapter modules. Sharing
of parameters proves to be beneficial in a wide range of applications, such as large language models,
cloud services or Generative AI. Therefore, it is important to convey as much as possible of already
gained knowledge from existing model to another. The method of adapter modules benefits from the
preservation of existing knowledge while maintaining low retraining costs.

The two most common transfer learning techniques in NLP are feature-based transfer and fine-tuning.
On contrary, the original paper proposes the use of a novel solution – adapter modules (Rebuffi et al.,
2018). Features-based transfer involves pre-training real-valued embeddings vectors. The embedding are
either at the word, sentence, or paragraph level (Le and Mikolov, 2014). Afterwards, the embeddings
are passed to custom downstream models. During the fine-tuning, the copying of the weights from a
pre-trained network takes place, which are in the next step tuned on the downstream task. However, it
is important to point out the fact that Both feature-based transfer and fine-tuning require a new set of
weights for every new task. In the terms of efficiency, fine-tuning is considered more parameter efficient if
the lower layers of a network are shared between tasks. On the other hand, the proposed adapter tuning
method achieves even higher rate of efficiency in the number of parameters. This difference is portrayed
on Figure 1. Adapters can be described as new segments which are put additionally between the layers
of a pre-trained network.

To combat the drawbacks of costly retraining and the loss of already learned information, the adapters
bring the idea of freezing the shared parameters. Therefore, the model is enabled to retain the memory
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Figure 1: Trainable parameters comparison (Houlsby et al., 2019)

of previous tasks. The key innovation of the original paper was the design of an effective adapter module
and its integration with the base model. The proposes bottleneck architecture performed satisfactorily
on GLUE benchmark, almost matching the fully fine-tuned BERT while utilizing only 3% of task-specific
parameters. Similar results were attained on further datasets and SQuAD extractive question answering.
Our results did not achieve the levels of efficiency of the original paper, however, they support the
efficiency of adapters for NLP tasks.

2 Adapter tuning for NLP

The presented strategy of adapters contained three key properties (Houlsby et al., 2019): (i) it attained
good performance, (ii) it permitted training on tasks sequentially, implicating, it did not require simulta-
neous access to all datasets, and (iii) it added only a minuscule fraction of additional parameters for each
task. The aforementioned properties are generally useful in environments where a significant number of
tasks are related to each other, therefore mutual sharing of already learned knowledge is highly desirable.
Prime examples are tasks present in GLUE or SQUaD benchmark dataset.

To achieve those features, the original paper contained a proposition of a new bottleneck adapter
module. Tuning of such a module was done by adding a negligible amount of parameters to a model, which
were subsequently trained on a downstream task. During vanilla fine-tuning of deep neural networks, a
modifications are made to the top layer of the network. Contrasting to this approach, adapter modules
perform architectural modifications that aim to re-purpose a pre-trained network for a downstream task.
Such a case is the adapter tuning strategy which involves injecting new layers into the original network.
The weights of the original network remain unmodified, while on the other hand, the new adapter layers
are randomly initialized. In the case of standard fine-tuning, the new top layer and the original weights
are co-trained, thus resulting in the loss of already gathered information. Contrary to this, during adapter
tuning, the parameters of the original network remain frozen and therefore may be subsequently shared
by a multitude of various tasks. Adapter modules have two main features: a small number of parameters,
and a near-identity initialization. The adapter-based tuning is used with the transformer architecture,
which is known to achieve state-of-the-art (SoTA) performance in a wide multitude of NLP tasks.

3 Experiments

In this chapter, the methodology and used data are described in a more elaborate manner. We replicate
the experiments performed in the original paper, describe the dataset, and use methods in accordance
with the original paper. Contrary to the original paper, we have omitted the use of SQuAD and additional
datasets and have focused entirely on testing on the GLUE dataset.
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Figure 2: Adapter module (Houlsby et al., 2019)

3.1 Experimental settings

We have utilized a publicly available pre-trained version of BERT BASE model as our base model. In
order to perform classification tasks of GLUE with BERT BASE model, we have tokenized the first token
in each sequence as a special “classification token”. Subsequently, we have proceeded with modifying
the following parameters to assess the best setting for optimal results: learning rate, number of epochs,
weight decay, and batch size. To further elaborate on the efficacy and versatility of the adapter modules,
we have selected additional architectures to be equipped with adapter modules and then compared them
with the original BERT BASE model. The models were trained with the use of Google Colab GPUs.

3.2 GLUE Benchmark

The General Language Understanding Evaluation (GLUE) benchmark is a collection of resources for
training, evaluating, and analyzing natural language understanding systems. GLUE benchmark consists
of: A benchmark of nine sentence- or sentence-pair language understanding tasks(datasets) built on
established existing datasets and selected to cover a diverse range of dataset sizes, text genres, and

Figure 3: GLUE Benchmark
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degrees of difficulty, A diagnostic dataset designed to evaluate and analyze model performance with
respect to a wide range of linguistic phenomena found in natural language, and A public leaderboard for
tracking performance on the benchmark and a dashboard for visualizing the performance of models on the
diagnostic set. The format of the GLUE benchmark is model-agnostic, so any system capable of processing
sentence and sentence pairs and producing corresponding predictions is eligible to participate. The
benchmark tasks are selected so as to favor models that share information across tasks using parameter
sharing or other transfer learning techniques. The ultimate goal of GLUE is to drive research in the
development of general and robust natural language understanding systems. The structure and the
constituent sub-datasets of glue accompanied by their evaluation metrics can be seen in Figure 3.

3.3 Additional architectures

The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing
DistilBERT, a distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. DistilBERT is a small, fast and light Transformer model trained by distilling
the BERT BASE model. It contains 40% less parameters compared to BERT-BASE, runs with the
60% increase in speed while preserving over 95% of BERT’s performances as measured on the GLUE
benchmark. DeBERTa (Decoding-enhanced BERT with disentangled attention) is a model that improves
the BERT and RoBERTa models using two novel techniques. The first one is disentangled attention
mechanism, where each word is represented with the use of two vectors that encode the content and
position of the word and the attention weights among words are computed using disentangled matrices
of their contents and relative positions. The second technique, an enhanced mask decoder is used to
replace the output softmax layer to predict the masked tokens for model pretraining. Compared to
RoBERTa-Large, a DeBERTa model trained on half of the training data performed consistently better
on a wide range of NLP tasks, achieving increased efficiency levels on MNLI by +0.9% (90.2% vs. 91.1%),
on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). ELECTRA is
a pretraining approach that trains two transformer models: the generator and the discriminator. The
generator’s role is to replace tokens in a sequence and is therefore trained as a masked language model.
The discriminator tries to identify which tokens that were replaced by the generator in the sequence.
Masked language modeling (MLM) pretraining methods such as BERT corrupt the input by replacing
some tokens with masks and then training a model to reconstruct the original tokens. While they
produce good results when transferred to downstream NLP tasks, they generally require large amounts
of computation to be effective. Instead of masking the input, the ELECTRA corrupts it by replacing
certain tokens with plausible alternatives sampled from a small generator network. Afterward, instead of
training a model that predicts the original identities of the corrupted tokens, a discriminative model is
trained that predicts whether each token in the corrupted input was replaced by a generator sample or
not.

4 Results

The achieved results are portrayed in the Tables 1, 2 and 3. Results of our replication are displayed
on Table 1. Generally, our results did not achieve the performance that was stated in the original
paper. However, the attained performance is close to the original and supports the claim of effectivity
of adapter modules. To further support the claim, the additional tested models, depicted in Table
3, have achieved satisfactory performance, thus validating the versatility of adapter modules. However,
significantly decreased was achieved in the case of ELECTRA. DeBERTa and DISTILBERT have achieved
lower performance than BERT BASE with adapter module. The closest performance to the BERT BASE
with adapter module was achieved by DeBERTa.

Table 1: Replicated results
CoLA SST MRPC STS-B QQP MNLIm MNLImm QNLI RTE

BERT(Base) 58.2 92.5 90.6 69.3 70.7 84.8 85.3 89.9 69.3
Adapters 64 59.6 91.8 91.0 89.5 70.5 83.4 83.9 88.3 68.9
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Table 2: Original results
CoLA SST MRPC STS-B QQP MNLIm MNLImm QNLI RTE

BERT(Base) 60.5 94.9 89.3 87.6 72.1 86.7 85.9 91.1 70.1
Adapters 64 56.9 94.2 89.6 87.3 71.8 85.3 84.6 91.4 68.8

Table 3: Replicated results
Dataset CoLA

BERT(Base) 58.2
BERT(Adapters 64) 59.6

DISTILBERT(Adapters 64) 54.1
DeBERTa(Adapters 64) 58.2
ELECTRA(Adapters 64) 49.7

5 Conclusion

We have replicated the research with the use of the original dataset. We have utilized various settings
for the models that were used and selected the best performing ones. We have summarized the results
and made a comparison to the original paper, with the addition of additional models. The adapter
modules have showcased significant improvements over fine-tuning while maintaining the required level
of performance.
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1 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
2 Kempelen Institute of Intelligent Technologies, Bratislava, Slovakia

3 German Research Institute for Artificial Intelligence (DFKI),
Saarland Informatics Campus, Germany

{robert.belanec, ivan.srba, maria.bielikova}@kinit.sk, simon.ostermann@dfki.de

Abstract

Generative language models gained an increase in popularity shortly after the introduction of the
transformer architecture (Vaswani et al., 2017), which resulted in a fast increase in the number of
model parameters. Currently, large language models contain billions of trainable parameters, which
makes them power and cost inefficient. Large language models also require significant amounts
of training data, which especially benefits well-resourced languages. To address these problems,
parameter-efficient fine-tuning methods have emerged. Parameter-efficient fine-tuning methods
aim to fine-tune generally pre-trained language models while training only a fraction of parameters.
In the scientific and academic community, authors often compare with the current state-of-the-art.
However, for the results to be relevant and trustworthy, both of the works (state-of-the-art and
compared) must be reproducible. In our work, we present the methodology and the results of our
replication study of a parameter-efficient fine-tuning method introduced in the paper ATTEMPT:
Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts. To replicate
the results provided by the authors, we have conducted a series of experiments and we show that
better-performing source prompts may contribute more to the overall results. We also point out a
stability issue and provide examples of results that have a better score but are harder to replicate
due to the randomness factors. Finally, we compare our results to the results provided by the
authors and derive a conclusion based on a discussion.

1 Introduction

In recent years, generative language models have experienced a steady increase in popularity. After the
introduction of the transformer architecture (Vaswani et al., 2017) for natural language processing, there
has been a fast increase in the number of model parameters. The first widely-used transformer models
contained millions of trainable parameters (e.g. BERT-Large having 340 million parameters (Devlin et al.,
2019) and GPT having 117 million parameters (Radford et al., 2018)). Recent architectures contain
billions of trainable parameters (e.g. GPT-2 having 1.5 billion parameters (Radford et al., 2019) and
GPT-3 having 175 billion parameters (Brown et al., 2020)). With the rising trend of increasing the number
of parameters to achieve better results, models often require a vast amount of computational resources
for training. Besides their parameter hunger, large language models also require significant amounts of
training data, which especially benefits well-resourced languages. The newest language models often
perform sub-par for low-resourced languages, decreasing the exhibited trust in such models. Significant
trust decrease is also caused by the loss of interpretability that correlates with the size of the newest
language models.

Consequently, there is a strong motivation in the natural language processing research community
to decrease the number of trained parameters and the need for large amounts of training data, while
maintaining the results on downstream tasks. To address these problems, parameter-efficient and data-
efficient fine-tuning methods have emerged. Parameter-efficient fine-tuning methods aim to fine-tune
generally pre-trained language models while training only a fraction of the model parameters. Data-efficient
finetuning methods aim to leverage the power of large pre-trained models and try to adapt them to specific
tasks or domains with only minimal amounts of training data. Many state-of-the-art parameter-efficient
models have been shown also to require less training data, which is why both problems can often be
alleviated with a single method (Yu et al., 2022; Gu et al., 2022).

In the scientific and academic community, authors often compare with the current state-of-the-art.
However, for the results to be relevant and trustworthy, both of the works (state-of-the-art and compared)
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must be reproducible. This means, that by following the authors’ publication, we should be able to derive
the same results as provided by the authors. In our work, we present the methodology and the results
of our replication study of a parameter-efficient fine-tuning method presented in the paper ATTEMPT:
Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts (Asai et al., 2022).

2 Related Work

Language models. Recently, generative language models have experienced a breakthrough that started
by introducing the transformer architecture (Vaswani et al., 2017), which was preceded by the introduction
of novel methods in machine learning translation like Sequence to Sequence models and attention (Sutskever
et al., 2014; Bahdanau et al., 2014). For natural language generation, the GPT (Radford et al., 2018)
model was introduced. Shortly after, BERT (Kenton and Toutanova, 2019) architecture was introduced,
replacing the bi-directional LSTM (Peters et al., 2018) with a bidirectional transformer architecture
pre-trained to de-mask masked parts of a text sequence.

Recently, with the introduction of large language models (Radford et al., 2018, 2019; Touvron et al.,
2023a,b; Jiang et al., 2023), the number of model parameters has risen from millions of trainable parameters
to billions. These models require large amounts of computational resources and large amounts of data to
train.

Large language models have also been trained to solve multiple natural language processing tasks. For
example, authors of the T5 model (Raffel et al., 2020) pre-trained their model on a set of a multi-task
mixture of unsupervised and supervised tasks. The T5 model is designed to solve text-to-text denoising
problems by training on text-to-text format datasets with span corruption. Building upon T5 versatility,
its improved version Flan-T5 (Chung et al., 2022) was introduced shortly after. Nevertheless, fine-tuning
large language models (e.g. to perform in a multi-task setting) is also a parameter-heavy task, therefore,
new methods of training have been introduced.

Parameter-efficient fine-tuning. The core idea of parameter-efficient fine-tuning is to train a neural
network model while backpropagating only over a small fraction of parameters. One of the first works
towards more efficient fine-tuning of the language models was a work introducing sequential adapters
(Houlsby et al., 2019), which are small trainable feedforward neural network modules, that are inserted
into transformer architecture layers, while keeping the rest of the model frozen. Adapters and their
variations (Pfeiffer et al., 2021; He et al., 2022; Chronopoulou et al., 2023) are still heavily used since they
provide flexibility for multi-task problems (e.g. by training multiple adapters for each task separately and
swapping between them on demand).

Some parameter-efficient fine-tuning methods focus on the reparameterization of the original weights
by introducing a smaller matrix that is then transformed into a bigger matrix that represents the δW
that will be added to the base model weights. For example, the Intrinsic SAID (Aghajanyan et al., 2020)
method uses a Fastfood transform to transform from the low-rank decomposing, but it is not that effective
due to the high memory complexity of the Fastfood transform (Le et al., 2013). Building on top of the
Intrinsic SAID method LoRA (Hu et al., 2021) introduced two separate matrices that form the resulting
δW matrix. After the introduction of LoRA, other methods based on LoRA appeared. For example,
QLoRA (Dettmers et al., 2023) uses quantization of model parameters to 4-bit NormalFloat and uses a
paged optimizer to deal with the memory spikes.

Another parameter-efficient fine-tuning method that adds modules to the base models is prompt-tuning
(Lester et al., 2021). Prompt-tuning trains embeddings (in a separate embedding module) that are
prepended to the input embeddings before inserting them into the base model. Prompt tuning requires
only less than 0.01% of the original parameters to train the model to a specific task. In parallel with
prompt-tuning, prefix-tuning (Li and Liang, 2021) was developed. Instead of prepending a single matrix
of weights to the first layer, in prefix-tuning, a matrix is prepended to each separate layer of a transformer
architecture. Therefore, it requires around 1% of the original parameters, still a relatively small number.
These methods can be classified as soft prompt fine-tuning methods (Liu et al., 2023; Vu et al., 2022; Asai
et al., 2022; Hambardzumyan et al., 2021; Wang et al., 2023), as they are fine-tuning parameter-efficient
soft prompts (i.e., which are not made by humans, when compared to hard prompts). These methods
provide more significant parameter reduction than some methods incorporating adapters but also sacrifice
a portion of the model input context.

Some recent works also focus on transferring soft prompt information like SPoT (Vu et al., 2022) and
ATTEMPT (Asai et al., 2022). The SPoT method investigates the transferability of soft prompts on 160
task combinations. ATTEMPT focuses on fine-tuning the model using prompt tuning on multiple tasks.
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Figure 1: Diagram representing training process of the prompt tuning method. The blue color represents
components with frozen parameters and the red color represents components with trainable parameters.
The yellow color represents components without any weights (i.e. model inputs and outputs or utility
functions).

After training the source soft prompts for each source task, ATTEMPT then trains a target soft prompt
to solve the target tasks using a trainable attention layer to incorporate the source prompts accordingly.
This method comes from the idea that learning to solve different tasks may contribute to solving other
tasks. ATTEMPT is still very parameter-efficient as it trains only 0.4% of the original model parameters.

3 Replicated Methods

We have divided the ATTEMPT parameter-efficient fine-tuning method replication into two main parts:
1) the prompt tuning (Lester et al., 2021) replication, which we will use to train the source soft prompts
and target soft prompts for prompt transfer, and 2) the ATTEMPT method replication. ATTEMPT is
built on top of the prompt tuning and heavily relates to it. At the time of execution of this replication
study, the prompt tuning parameter-efficient fine-tuning method is implemented in the publicly available
parameter-efficient fine-tuning module (Mangrulkar et al., 2022). Regardless, we have decided to replicate
the prompt tuning method, since we can build on it when implementing ATTEMPT. In this chapter, we
will further describe both replicated methods.

3.1 Parameter-Efficient Prompt Tuning

The first parameter-efficient fine-tuning we will describe is prompt tuning (Lester et al., 2021). Prompt
tuning is a parameter-efficient fine-tuning method that prepends a trainable embedding (prompt embedding)
to the input embeddings to be forwarded as input to the base model. When training, the prompt embedding
guides the language model to produce better results. Prompt tuning can therefore be seen as automatic
prompt generation (which is also similar to adversarial reprogramming that can be seen in computer
vision tasks (Elsayed et al., 2019)). This automatically trained prompt embedding is called a soft prompt.

Soft prompts are often compared with hard prompts. Hard prompts are prompts, that are made
by a human (prompt engineer) to improve the results of already trained language models without any
weight updates. This comparison of soft prompts and hard prompts can sometimes mislead the reader
as it suggests that soft prompts are interpretable and readable in human language. Interpretation of a
soft prompt in human language is not straight forward as the prompt embedding is trained separately.
Therefore it has its own set of tokens (indices of the embedding) which is not a subset of the base model
tokens and, therefore cannot be detokenized to the base model’s vocabulary.

In a text-to-text approach using T5 (Raffel et al., 2020) as a base model we can interpret the language
model as a conditional probability Prθ(Y |X) where Y is a sequence of tokens conditioned by a sequence
of input tokens X parametrized by models weights θ. Prompting is a method that incorporates creating a
hard prompt P which is a set of tokens prepended to input tokens [P ;X]. Prompt tuning builds upon this
idea and introduces parametrization of P with its weights θP . The conditional probability of generating
Y is now Prθ;θP (Y |[P ;X]). T5 embeds the set of input tokens into a matrix Xe ∈ Rn×e where n is the
length of the input token sequence e is the dimension of T5 embeddings. Prompt tuning represents soft
prompts as a matrix of parameters P ∈ Rp×e where p is the length of the soft prompt.

To gain a better overview of the prompt tuning parameter-efficient fine-tuning method, we provide a
method diagram that can be seen in Figure 1. After the training, soft prompts include information about
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the tasks that they were trained on. This can also mean that combining multiple soft prompts benefits in
solving multi-task problems. The ATTEMPT method further builds upon this idea.

3.2 ATTEMPT – Attentional Mixtures of Soft Prompts

The ATTEMPT method takes advantage of the prompt tuning and builds on top of the method by
introducing an attention module to create a mixture of pre-trained soft prompts based on how much
they contribute to the result. The main hypothesis of the ATTEMPT method is when transferring the
information from one soft prompt trained on a specific task, it can also contribute to solving other tasks,
which is parallel to the language model transfer learning (e.g. model trained to summarize texts in the
English language has already learned to understand the English language grammar and therefore can be
trained easily to solve other English language tasks).

ATTEMPT can be trained in multiple ways – in a single-task setting (training each dataset separately)
and in multi-task training on multiple concatenated datasets with an option to share the attention module
across multiple tasks. In both of these settings, ATTEMPT trains a set of target prompts for each
task (i.e. in a single task setting and a multi-task setting without a shared attention module the number
of target prompts is 1) and uses a set of soft prompts to calculate the addition to the target prompt.
We will further describe each of these training settings in the following paragraphs. The overview of the
ATTEMPT method can be seen in Figure 2.

Single-task training setting. To train ATTEMPT in a single-task setting, we first need a set of
pre-trained soft prompts (that authors call source prompts) and choose a soft prompt to initialize the
target prompt (the target prompt can be also initialized with random weights, but authors used one of
the pre-trained source prompts to initialize the target prompt). The target prompt is trained similarly to
the prompt-tuning prompt (a matrix of parameters that is prepended to the matrix of input embeddings).
What ATTEMPT does on top of that is to add a weighted sum of source prompts to the target prompt to
produce an instance prompt. The weighted sum is calculated using attention scores from the attention
module.

Multi-task training setting. To train ATTEMPT in a multi-task setting, we can train the target
prompt similarly to the single-task setting, but concatenate multiple datasets into a single training dataset.
We can then train the target prompt on a single train set and evaluate it on multiple evaluation sets
separately. Multi-task ATTEMPT can be also trained with a shared attention module for multiple tasks.
This means that for each dataset, we have a separate target prompt identified by a task ID. We then
assign a task ID to each dataset before training. During training, we then retrieve the right target prompt
based on the task ID of the input data. The process of retrieving the right target prompt is depicted in
Figure 3. After we retrieved the right prompts for every input in the batch, we can continue with the
instance prompt calculation as mentioned in the single-task training setting. This will increase the overall
trained parameters, but the usage of only a single shared attention module for multiple target prompts
compensates for the increase.

Attention module. The role of the attention module is to determine a score for the contribution of
each source prompt based on the model input X, source prompts P , and the target prompts Ptarget.
Since X ∈ Rn×e and Pj ∈ Rp×e have different sequence lengths, the attention module first does max

pooling over the model input and source prompts to get X̂ ∈ Re and P̂j ∈ Re. After the max pooling of

a sub-network G projects the input X̂ into the space of source prompts. The sub-network G consists of
one downsampling fully connected input layer Hdown = WT

down(X̂) and one upsampling fully connected
layer with a SiLU (Elfwing et al., 2018) non-linear activation function Hup = WT

up(SiLU(Hdown)). As an
output layer, there is a layer norm layer Hout = LayerNorm(Hup) after the upsampling layer. Finally, the

attention module computes the attention score aj by multiplying the P̂j and Hout and applies a softmax
over the scores as follows.

ATTEMPT also scales the attention scores with temperature T (Radford et al., 2021) to avoid making
the attention over-confident. To calculate an instance prompt ATTEMPT adds a weighted sum to the
target prompt as follows:

Pinstance = Ptarget +

t+1∑
j=1

ajPj (1)
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Figure 2: Diagram representing training process of the ATTEMPT method. The blue color represents
components with frozen parameters and the red color represents components with trainable parameters.
The yellow color represents components without any weights (i.e. model inputs and outputs or utility
functions). The dot sign operation represents prepending the instance prompt to the input embeddings.
The plus sign operation represents the addition of weighted average interpolation and target prompt from
eq. 1.

ATTEMPT (multi)

MNLI dataset

QQP dataset

XY dataset

...

task_id = 0

task_id = 1

task_id = n

If task_id == 1 Target prompt 1

if task_id == 2 Target prompt 2

if task_id == n Target prompt n

...

Figure 3: Diagram representing the process of target prompt selection when using shared attention across
multiple target prompts. The red color represents components with trainable parameters and the yellow
color represents components without any weights (i.e. model inputs and outputs or utility functions). The
purple color is to represent added information to datasets.
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Input embeddings Max pooling Linear (upsample)

Linear (downsample)

SiLU

Layer norm

Trained soft prompts

Target prompt

Max pooling BMM

Softmax

Attention scores
(ratios)

Attention subnetwork

Figure 4: Diagram representing the architecture of attention module. The blue color represents components
with frozen parameters and the red color represents components with trainable parameters.

Where Ptarget represents the task-specific part and the weighted sum represents a composition from
different tasks that differs from different instances of the same task. As shown from eq. 1, the selection of
1 + at+1 weights for the target task enables the ATTEMPT to use the knowledge from the target prompt
when the knowledge from soft prompts is insufficient. These are some of the theoretical details from the
ATTEMPT article, that we have built upon in the implementation phase of our replication study.

4 Implementation

Implementing the replicated method is an important part of our replication study. We implement the
prompt tuning parameter-efficient fine-tuning method as well as the ATTEMPT parameter-efficient
fine-tuning method. We use Python with deep learning modules (i.e. PyTorch, Transformers). All of our
source code can be found in our GitHub repository1. Required Python packages are in the requirements.txt
file. The original ATTEMPT implementation can be found in the authors’ repository2.

The run.py script creates a PeftTraning object that contains all the information about a single
training run and handles the data pre-processing and training in the run method. During the dataset
pre-processing, each dataset has a specified preprocessor function (in tasks/tasks.py file) to transform
data into text-to-text setting and a formater function to put the transformed data into seq-2-seq format.
The ATTEMPT authors use the preprocessing available in the T5 implementation, but instead of using
words for classification (i.e. entailment, neutral, contradiction), the authors used numbers for classification
(i.e. 0, 1, 2). We suspect that this change may result in pre-trained T5 model sub-optimal performance3.
However, to achieve similar results as ATTEMPT, we used the same preprocessing as the authors did.
The datasets are then split into training, validation, and test sets. Large datasets (over 10k samples) have
a validation set split into 1000 validation samples and the rest for the test set; the small datasets (less or
equal to 10k samples) have a validation set split into two halves, which are validation and test sets. We
have used seed 42 to match the authors’ seed for the dataset shuffle.

The PeftTraning also creates a PeftConfig and initializes a pre-trained version of the T5 model (Raffel
et al., 2020). The PeftConfig is then inserted into the get peft model method, which creates and initializes
the PeftModel based on the config. The config contains the information about the type of task (in
our case seq-2-seq language model) and the type of parameter-efficient fine-tuning method (in our case
prompt tuning or ATTEMPT). We also implement save pretrained, from pretrained, forward and generate
methods. Since we have decided to implement prompt tuning from scratch, we built a parameter-efficient

1https://github.com/DisAI-Replication-Challenge/ATTEMPT
2https://github.com/AkariAsai/ATTEMPT
3We have also approached the authors to discuss this (and other) possible issues, but unfortunately, we did not receive an

answer at the time of writing this report.
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fine-tuning framework called CPEFT for Custom PEFT, which is a custom remake of Huggingface
parameter-efficient fine-tuning module (Mangrulkar et al., 2022) that we took inspiration from.

4.1 Prompt Tuning Implementation

Prompt tuning introduces a new variable to set the length of the prompt to be prepended to the input
and a new variable to set the initialization of the prompt. The prompt can be initialized with random
numbers, with random embeddings from the model vocabulary, and with single or multiple pre-trained
prompt embeddings. During initialization, the prompt encoder Pytorch module is created and appended
to the base model. The prompt encoder for the seq-2-seq language model is initialized with double the
size of the prompt since the seq-2-seq architecture consists of two separate networks. This is the behavior
presented in the Huggingface parameter-efficient fine-tuning module (Mangrulkar et al., 2022), but it does
not match the implementation from the original prompt tuning paper (Lester et al., 2021). We have
decided to use the Huggingface parameter-efficient fine-tuning behavior and just halve the size of the
prompt encoder embeddings in configurations.

During the forward or generate of the model the method get prompt is called. This method calls the
forward function of the prompt encoder which returns the whole embedding matrix of the prompt encoder.
This matrix is returned for each data in the batch and prepended to the input embeddings. After that,
the result is inserted into the forward function of the base model. This implementation does not require to
override of the original backward method or backpropagation calculation. During the saving and loading
of pre-trained PeftModel, only the prompt encoder embeddings are saved, and loaded.

We train the source soft prompts individually for the SQuAD (Rajpurkar et al., 2016), SST-2 (Socher
et al., 2013), QQP, QNLI (Wang et al., 2018), MNLI (Williams et al., 2018), and ReCoRD (Zhang et al.,
2018) datasets. The training is set for 5 epochs and a single run with evaluation after each epoch. Weight
decay for the AdamW optimizer is set to 1 × 10−5 with a linear scheduler with 500 warmup steps and a
learning rate of 3× 10−1. The size of all soft prompts is 100. We use a maximum target length of 128 and
a maximum input length of 512 for SQuAD and 256 for others.

4.2 ATTEMPT Implementation

The ATTEMPT method implementation includes an initialization of the prompt encoder with single or
multiple pre-trained prompt embeddings, based on whether to train ATTEMPT in a single-task setting
or multi-task setting. When initializing the ATTEMPT method, the prompt encoder and the attention
module are created. The attention module consists of the sub-network module and the process of creating
attention scores similar to the diagram in figure 4. The instance prompt is then created in the forward
method of the PeftModel module.

The only difference in multi-task ATTEMPT is in the prompt encoder initialization and prompt
fetching. While the single-task prompt embedding was just a single embedding, in the multi-task setting
there is a ModuleList of embeddings for each task. Each embedding is then chosen based on the task
IDs of the data. Similar to the prompt tuning, the instance prompt is then forwarded to the base model.
During saving and loading of the model together with the prompt encoder embeddings also the attention
module is saved and loaded.

We train ATTEMPT on 8 datasets from the GLUE (Wang et al., 2018) benchmark and 5 datasets
from the SuperGLUE (Wang et al., 2019) benchmark. We train datasets over 10k samples for 10 epochs
and the rest of the datasets for 20 epochs. We conduct 3 runs for each training configuration, initialize the
target prompt embeddings with source prompts trained on the MNLI dataset, and use all of our trained
soft prompts as source prompts. Weight decay for the AdamW optimizer is set to 1 × 10−2 with a linear
scheduler with 500 warmup steps and a learning rate of 3 × 10−1. The size of all soft prompts is 100. We
use a maximum target length of 128 and a maximum input length of 348 for MultiRC and 256 for others.
Another different setting from prompt tuning is that we pad the input to the maximum length of the T5
input token sequence.

The same settings are used in multi-task training except that we are using shared attention in every
case. We are also not using a different learning rate for the attention sub-network and we are not using
pre-trained weights for attention sub-network initialization.
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dataset SQuAD SST-2 QNLI MNLI QQP ReCoRD avg.

Authors’ soft prompts 31.7 63.7 92 62.9 92.3 82.9 70.9

Our soft prompts 68.8 95.4 95.5 84.6 94.2 82.1 86.8

Table 1: Evaluation of soft prompts provided by authors and our trained soft prompts. We have used
accuracy for all of the datasets.

GLUE SuperGLUE

dataset MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA avg. Multi BoolQ WiC WSC CB avg.

ATTEMPT single 84.3 90.3 93 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5

ATTEMPT multi 83.7 90.1 93.2 94.3 90.8 87.3 82.7 64.3 85.8 74.4 78.5 66.5 69.2 82.1 74.1

Authors’ soft prompts single 72.61.7 90.30 92.40.3 92.90.2 900.5 84.52.3 63.11.1 76.35.9 82.81.5 4841.5 70.27.3 606.6 64.74.4 67.99.4 62.213.8

Our soft prompts single 83.80.2 90.30 92.70.3 89.41.3 900.4 86.42 74.80.7 72.82.3 850.9 710.9 75.10.5 57.87.7 661.1 77.42.1 69.52.5

Authors’ soft prompts multi 62.17 87.70.8 90.40.3 91.11.5 89.61.5 72.11 474.2 69.40.2 76.22.1 71.70.9 68.96.2 59.64.1 347.7 65.519.7 59.97.7

Our soft prompts multi 83.50.2 900 92.40.2 90.30.9 90.10.3 81.71.2 73.62.2 69.50 83.90.6 68.20.6 750.7 51.36.4 56.49.1 84.55.5 67.14.5

Table 2: Test results of our ATTEMPT implementation compared to the results provided by authors. The
results are calculated as a mean across 3 runs. We have used Pearson Correlation for STS-B, F1 macro
for MultiRC (Multi), and accuracy for other datasets. The first two rows represent results provided by
the authors in the ATTEMPT paper.

5 Experiments and Results

Since our replication study focuses mainly on replicating ATTEMPT results, we did not replicate the
results provided by the prompt tuning authors; we only compared our results to source prompts provided
by the ATTEMPT authors4. All of our experiment results and saved weights were documented in
Weights & Biases projects, which are available online5. We are executing the experiments individually per
configuration on a single Nvidia A10, A40, or A100. There is also a config file available for each of the set
of experiments, we have created config files for prompt tuning, ATTEMPT single with authors’ source
prompts, ATTEMPT single with our source prompts, ATTEMPT multi with authors’ source prompts,
ATTEMPT multi with our source prompts. The ATTEMPT experiments set is multiplied by the number
of dataset sets used.

5.1 Prompt Tuning

Better source prompt performance. Based on the results of source prompt training in Table 1,
we can say that our source prompts are on average performing better than source prompts provided by
authors. These results were not expected, as we followed the authors’ hyperparameter settings and only
trained the source prompts for 5 epochs. Since we trained the source prompts only for 1 run, we cannot
determine stability across multiple runs.

The difference from the authors’ results may be caused by the source prompt initialization from T5
vocabulary, which tends to increase instability as reported by ATTEMPT authors Asai et al. (2022).
There may be also other randomness factors that we did not take into account, which may have caused the
results to differ. Authors are also using their custom implementation of prompt which includes adapting
and changing the original T5 code from the transformers library which may behave differently from our
adapted CPEFT solution.

5.2 ATTEMPT

Better-performing source prompts over multi-task training. The results from ATTEMPT
experiments in Table 2 show that the single-task method with our trained source soft prompt almost
matched the authors’ multi-task ATTEMPT results in average GLUE datasets score. This leads us to
conclude that better-performing source prompts benefit the ATTEMPT performance. However, multi-task
training splits the number of trained parameters over all trained tasks, which makes it more efficient
compared to single-task training and more suitable for multi-task problems. Another observation is that
with the increase of source prompts performance, the overall ATTEMPT performance also increases. This
can mean that if the target prompt reaches a point in training in which it outperforms the source prompt
attention interpolation the source prompts may start to hold back the target prompt. We can also see
that better-performing source prompts tend to increase the stability of multi-task training.

4https://homes.cs.washington.edu/~akari/models/attempt/source_prompts.zip
5https://github.com/DisAI-Replication-Challenge/ATTEMPT#experiment-results
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GLUE SuperGLUE

dataset MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA avg. Multi BoolQ WiC WSC CB avg.

ATTEMPT single 84.3 90.3 93 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5

ATTEMPT multi 83.7 90.1 93.2 94.3 90.8 87.3 82.7 64.3 85.8 74.4 78.5 66.5 69.2 82.1 74.1

Authors’ soft prompts single 75.4 93.9 94.6 95.5 88.9 86.3 75.3 77.2 85.9 68.6 77.3 67.4 59.6 78.6 70.3

Our soft prompts single 84.6 94.3 95.4 93.4 89.5 87.2 81.9 75.6 87.7 74.2 76.8 65.8 67.3 82.1 73.2

Authors’ soft prompts multi 75.3 93.8 93.5 95.4 88.9 80.9 60.1 68.7 82.1 68.9 75 60.2 59.6 78.6 68.5

Our soft prompts multi 84.8 94.2 92.5 87.1 88.6 78.9 77.5 68.7 84 69.4 76 64.3 63.5 85.7 71.8

Table 3: Cherry picked results of our ATTEMPT implementation – best validation results over all runs.
We have used Pearson Correlation for STS-B, F1 macro for MultiRC (Multi), and accuracy for other
datasets. The first two rows represent results provided by the authors in the ATTEMPT paper.

Stability problems across multiple runs. We have noticed training instability across multiple runs
of ATTEMPT, especially in smaller-size datasets (less than 10k samples). The instability may be caused
by the random weight initialization and since we did not use the seed for the weight (only for dataset
shuffle) of the attention module, randomness factors may be another reason why our results differ from
the authors’ results. Since the ATTEMPT authors did not provide any information about stability, we
have chosen to select also the best validation results across all of the runs to see how the results shift.
These results can be seen in Table 3 and are called cherry-picked results. We can see that cherry-picked
results can increase the overall GLUE and SuperGLUE score of our ATTEMPT implementation, but
these results do not say anything about the true ATTEMPT performance.

The need for pre-trained attention of multi-task ATTEMPT. We were not able to match
the results of multi-task ATTEMPT, but we suspect that one of the reasons why our implementation
underperformed the authors’ multi-task ATTEMPT implementation is the lack of pre-training of the
attention module. We were not able to retrieve more information about the pre-training of the attention
module from the ATTEMPT paper, therefore we have decided to not pre-train the attention module. We
also did not set a separate learning rate for the attention module sub-network, which may be another
cause of why we ended up with different results.

Overall ATTEMPT Results. Our experiments with single-task ATTEMPT achieved a better average
GLUE benchmark score than the results reported in the ATTEMPT paper by ATTEMPT authors and
almost matched the SuperGLUE benchmark scores. The multi-task ATTEMPT experiments did not
achieve better results on both benchmarks and our multi-task ATTEMPT results are lower than the
single-task ATTEMPT results. We suspect that the requirement of the attention module may be crucial
for yielding better results for the multi-task training, since it may be harder for the attention module to
adapt for multiple tasks from scratch. Another reason for not achieving the exact results as provided by
the ATTEMPT authors may be the randomness factors. Our prompt initialization, data splits, and even
the training environment (i.e. GPU, Python modules versions) were not necessarily the same, which may
have caused differences in training.

6 Conclusion

In our replication study, we have successfully replicated the parameter-efficient fine-tuning method
presented in the paper ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures of
Soft Prompts (Asai et al., 2022). Based on the results from conducted experiments, we have identified that
better-performing source prompts in single-task ATTEMPT training achieve on average better results
even when compared to multi-task training. We also discuss the stability problems that we have faced
during ATTEMPT training and the possible need for pre-training of the attention module for multi-task
ATTEMPT training.

Furthermore, we would like to conduct extended experiments with ATTEMPT and investigate how
dataset size and number of trained source prompts affect the performance of ATTEMPT. At the same time,
we would like to investigate the transferability of source prompts trained on tasks in multiple languages
for multi-lingual tasks. Lastly, we would like to look at the architecture of ATTEMPT and its attention
module to investigate, whether there are other ways how to look at attentional task transferability, like
replacing the max pooling with another transformation that retains more information.
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Abstract

This paper presents a replication study conducted on two multimodal fact-checking models: a
baseline model and the Logically team’s model, as part of the Defactify 2 Workshop at AAAI
2023. The replication process involved detailed reimplementation of the model architectures,
training procedures, and evaluation methodologies described in the original papers’ results. Our
results closely align with the reported outcomes, validating the robustness of the models, with
only minor discrepancies between the replicated and original results, attributed to factors such as
randomness and nuanced variations in model configurations. The Logically team’s original result
was 78.97% (weighted F1 score on the test set), compared to our replication’s 77.96%. Similarly,
the baseline model achieved a reported result of 64.99%, while our replication yielded 63.37%.
Our study underscores the significance of open science practices for fostering reproducibility and
progress in the field of multimodal entailment research. We provide the replicated code for both
Baseline and team Logically on GitHub, making it accessible to researchers and practitioners
worldwide. The GitHub repository containing the code can be found at https://github.com/
ivana-13/DisAI_replication_challenge_2024.

1 Introduction

Within the landscape of artificial intelligence and language technologies, the Kempelen Institute of Intel-
ligent Technologies (KInIT), in collaboration with DFKI, the University of Copenhagen, and CERTH, is
deeply engaged in the DisAI project. This collaborative effort aims to elevate the scientific excellence of
KInIT in AI and language technologies, with a specific focus on combatting disinformation. Recognizing
the societal challenges posed by misinformation and the need for scientific advancement in Slovakia’s
research and innovation ecosystem, the DisAI project concentrates on three core areas: Multilingual Lan-
guage Technologies, Multimodal Natural Language Processing, and Trustworthy Artificial Intelligence.

As part of the DisAI project, KInIT has initiated a Replication Challenge, offering an invaluable
opportunity for early-stage researchers to collaborate with mentors from leading research institutions.
This challenge revolves around replicating existing research in multilingual language technologies, mul-
timodal natural language processing, and trustworthy artificial intelligence, with a primary emphasis on
combating disinformation.

In this Replication Challenge, our objective is to reproduce a selected approach presented at the
Defactify 2 Workshop (Suryavardan et al., 2023b), (Suryavardan et al., 2023a). The Defactify 2 Workshop,
a multimodal fact-checking workshop held at AAAI’23, convened researchers and practitioners to address
the escalating issue of fake news. The workshop introduced a multimodal fact verification news dataset
called Factify 2, which attracted over 60 participants and yielded nine final test-set submissions.

The approach presented by the Logically team, securing the third position in the Defactify 2 Workshop
challenge, delineates a multimodal fact-checking system grounded in evidence retrieval techniques followed
by two identical but independent unimodal cross-modal Transformer Encoders. Responding to the urgent
need for automated fact-checking systems, this approach highlights the potential of multimodal veracity
prediction, leveraging both textual and visual inputs to predict a claim’s truthfulness.

Our choice to replicate the approach presented by the Logically team arises from its innovative method-
ology, the unavailability of its code for public access, and the promising results it achieved in the Defactify
2 Workshop challenge.
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This Replication Challenge aligns with the broader objectives of the DisAI project, underscoring the
significance of scientific excellence, collaboration, and the practical application of research in addressing
societal challenges related to disinformation. In the subsequent sections, we delve into the intricacies of
the Defactify 2 Workshop, the Logically team’s approach, our replication strategy, and the anticipated
contributions to the field of multimodal fact-checking.

2 Related Work

In the pursuit of advancing fact-checking methodologies, researchers have explored various avenues, from
unimodal to multimodal approaches, to discern the veracity of claims effectively. Here, we provide
an overview of related work in three key dimensions: text-based datasets, multimodal datasets, and
modeling approaches, drawing insights from the literature surrounding the Defactify 2 Workshop, the
approach presented by the Logically team, and relevant prior research.

Text-based Datasets: Numerous datasets have emerged in recent years to facilitate fact-checking in
text-based domains. Notable datasets include LIAR (Wang, 2017), FEVER (Thorne et al., 2018), or
COVID-19 dataset (Patwa et al., 2021b), each offering diverse claims and supporting documents for
fact-checking purposes.

Multimodal Datasets: Recognizing the limitations of text-only datasets, the research community has
shifted towards embracing multimodal datasets that incorporate textual, visual, and sometimes even
temporal data. Datasets like fakeddit (Nakamura et al., 2019), FakeNewsNet (Shu et al., 2020), and
MOCHEG (Yao et al., 2023) provide a rich source of multimodal instances for fake news detection.
Methods to tackle this problem have been proposed in studies by Wu et al. (2021), Jing et al. (2023),
Hua et al. (2023), Yadav et al. (2023). For a detailed survey on multimodal fake news detection, please
refer to (Alam et al., 2021).

Building on the successes of previous iterations, the Factify 1 dataset (Mishra et al., 2022) at AAAI
2022 served as a multimodal fact-verification dataset, comprising 50k instances categorized into Support,
Insufficient, and Refute. Moving forward, Factify 2 at AAAI 2023 extended this dataset with additional
instances, introducing data from satirical articles.

Modeling approaches: The text-based datasets employ a range of methods, including CNNs (Saleh
et al., 2021), RNNs (Ajao et al., 2018; Sunagar and Kanavalli, 2022), and BERT-based models (Kaliyar
et al., 2021; Patwa et al., 2021a; Glazkova et al., 2021), to detect and verify text-based fake news.

In the Defactify 1 Workshop, researchers employed methods like BERT (Dhankar et al., 2022),
RoBERTa (Zhuang and Zhang, 2022), and BigBird (Gao et al., 2021) for textual features, while vi-
sual features were extracted using ResNet (Gao et al., 2021), DeiT (Wang and Peng, 2022), EfficientNet
(Hulke et al., 2021), and VGG (Zhuang and Zhang, 2022). Please refer to (Patwa et al., 2022) for details
of all the methods.

In Defactify 2 Workshop, the participants utilized various techniques for text embeddings, including
DeBERTa (He et al., 2020), CLIP (Radford et al., 2021), S-BERT (Reimers and Gurevych, 2019), ROUGE
(Lin, 2004) and Word2Vec. The image embeddings were extracted through Swinv2 (Liu et al., 2022),
ResNet, CLIP (Radford et al., 2021), ViT and DeiT (Wang and Peng, 2022). The first and second best
approaches Triple-Check (Du et al., 2023) and INO (Zhang et al., 2023), provided their code publicly.
The lack of publicly available code for the third best approach at Defactify 2 Workshop is one of the
main reasons why we decided to replicate Logically (Verschuuren et al., 2023).

3 Task Description

In the Factify challenge, the task revolves around detecting multimodal fake news, particularly in verifying
the authenticity of claims. This task is framed as multimodal entailment, where both text and image
contribute to evaluating a claim’s truthfulness. The aim is to determine if a given claim and image
align with information from a reliable source, termed the ”document”. This approach recognizes the
complexity of fact-checking, which necessitates a holistic assessment of textual and visual content.

The terms “claim” and “document” denote the entities under scrutiny. A claim usually represents
a short public statement or assertion that requires verification. In data collection, claims are gathered
from social media, particularly tweets from Twitter, where users express unsupported statements.
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On the other hand, a document serves as a credible source of information, typically derived from full
articles that cover diverse topics and contexts. Documents, in the form of full articles, are chosen as
reliable sources to cross-reference and verify the veracity of the claims.

In this context, veracity prediction refers to the system’s capability to predict the truthfulness of
a claim, considering both textual and visual content. Multimodal entailment involves evaluating the
veracity of a claim by comparing it to a reliable source, utilizing both textual and visual information.

Each data point consists of a claim and its associated document containing textual and visual infor-
mation. The task involves determining if the document entails the claim. The entailment between the
four data sources, namely claim image, claim text, document image, and document text, is used to define
the categories that the data are classified into. This is also shown in Figure 1.

The system classifies each data sample into one of the five categories:

� Support Text: Textual data of the claim is entailed by the textual data of document, but their
images are not entailed.

� Support Multimodal: Both textual data and image of the claim are entailed by textual data
and image of the document.

� Insufficient Text: Textual data is not entailed, but there may be common words, and the images
are not entailed.

� Insufficient Multimodal: Textual data is not entailed, but common words may exist, and the
images are entailed.

� Refute: Refute: Both textual and visual information from the document contradict or refute the
claim, indicating that the claim is false.

Category Text Image

Support Multimodal Figure 1a
Text is supported,

Similar News
Image is supported

Support Text Figure 1b
Text is supported,

Similar News
Image is neither

supported nor refuted

Insufficient Multimodal Figure 1c
Text is neither

supported nor refuted,
May have common words

Image is supported

Insufficient Text Figure 1d
Text is neither

supported nor refuted,
May have common words

Image is neither
supported nor refuted

Refute Figure 1e Fake Claim Image is refuted

Table 1: This table shows the categories the dataset has been divided into and the relationship between
the multimodal claim and document in each class.

4 Dataset

The Factify 2 dataset maintains the same categories as Factify 1, comprising 50,000 data samples. These
samples are evenly distributed among five categories (explained in Section 3), with a split of 70:15:15
into train, validation, and test sets, respectively. The Factify 2 dataset comprises claim-document pairs
gathered from diverse sources, including Twitter, fact-checking websites, and satirical news websites. Each
pair includes a claim and a document featuring image, text, and OCR text extracted from images. This
dataset is a comprehensive resource for advancing multimodal fact-checking methodologies, annotated
with labels such as Support Multimodal, Support Text, Refute, Insufficient Multimodal, or Insufficient
Text.

4.1 Dataset Collection

The Factify 2 dataset was curated through a dual-pipeline collection process, distinguishing between real
and fake news articles. The primary objective was to assemble a comprehensive dataset encompassing
textual and visual elements for claims and their corresponding supporting or disproving documents.
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(a) (b)

(c) (d)

(e)

Figure 1: Examples for all the five categories. The upper text and image are the claims and claim image,
and the bottom image text and image resemble the document and document image.

Real News Collection (Support and Insufficient Evidence):

� Leveraging the methodology from Factify 1, tweets from reputable news handles such as Hindustan
Times1, ANI2, ABC3, and CNN4 were collected date-wise.

� For each tweet from a news handle (account A), a corresponding tweet from another Twitter account
(account B) was selected. These tweets were then compared using Sentence BERT along with a
specified threshold to determine if they reported the same news.

� If the tweets are not the same, they are compared for common words using the NLTK library to
categorize the tweets as similar or dissimilar.

� Two image similarity metrics, namely cosine similarity of ResNet50 embeddings and histogram
similarity, were used to further categorize data based on visual entailment.

� With this collected data, the tweet from one handle (for example, A) is treated as the claim, and the
news article associated with the tweet from the other handle (in this example, B) as the supporting
document.

1https://twitter.com/htTweets
2https://twitter.com/ANI
3https://twitter.com/ABC
4https://twitter.com/CNN
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Fake News Collection (Refute):

� Data for the refute category was sourced from fact-checking websites, including Snopes 5, Factly6,
and Boom 7. These websites provided well-defined claims and documents disproving them.

� In this iteration, satirical articles were introduced, collected from websites like Fauxy8 and Empire-
News9. Despite explicitly stating their non-truthfulness, these articles were categorized as support,
given their supportive nature to the false claim.

� Images were scraped by searching for article headlines, and manual annotation was conducted to
augment data for the refute category.

5 Replicated Methods

5.1 Baseline

To better position the approach proposed by team Logically on Defactify 2 Workshop, we undertook
the task of replicating the simple baseline model crafted by Suryavardan et al. (2023b). Recognizing the
widespread use of diverse media in online information dissemination, the authors highlighted the crucial
consideration of images and text to ensure accurate claim classification, particularly in the context of
potential misrepresentation and the propagation of misinformation.

The baseline model follows an entailment-based approach, requiring extracting features from claim
and document image-text pairs. Visual features are derived using a pre-trained Vision Transformer model
(ViT). To capture textual nuances, the model employs a pre-trained SentenceBERT model. This model
generates sentence embeddings for both claim and document attributes. The SentenceBERT embeddings
are then concatenated with the pooled output from the ViT model, creating a fused representation of
visual and textual features. These combined features are subsequently processed through a classification
layer consisting of a Multilayer Perceptron (MLP) layer with 512 nodes, batch normalization, ReLU
activation function, 0.5 dropouts, and another NLP layer with five nodes. The overall architecture of the
model is illustrated in Figure 2, depicting the sequential flow of operations from feature extraction to
classification.

Figure 2: Baseline model architecture (Suryavardan et al., 2023b). Text, image features extracted from
the document, and the claim are concatenated and used for final prediction.

5https://www.snopes.com/
6https://factly.in/category/english/
7https://www.boomlive.in/fact-check
8https://thefauxy.com/
9https://empirenews.net/
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This replication of the baseline model serves as a benchmark for evaluating the effectiveness of future
enhancements’ effectiveness and provides a consistent starting point for researchers and practitioners
engaging with the Factify 2 dataset.

Support
Text

Support
Multimodal

Insufficient
Text

Insufficient
Multimodal

Refute Final

Baseline paper 50% 82.72% 80.24% 75.93% 98.82% 64.99%
Replication 56.73% 79.90% 76.64% 72.29% 96.87% 63.37%

Table 2: Category-wise and overall weighted average F1 score for baseline model on a test set of Factify
2 reported in (Suryavardan et al., 2023a).

5.2 Logically

The system architecture adopts a standard two-stage claim verification approach. Initially, a textual
evidence retrieval component identifies relevant evidence passages from the document. Subsequently, two
independent transformer-based encoders for cross-modal input (incorporating evidence passages text,
claim text, claim image, document image, claim OCR text, and document OCR text) and unimodal
input (incorporating evidence passages text and claim text) are used to predict the five multimodal
entailment categories.

The architecture utilizes a pre-trained cross-modal model CLIP and a pre-trained text embedding
model Word2Vec for cross-modal matching. Employing a list-wise concatenation strategy, the model
aims to capture both unified-multimodal and unimodal representations.

5.2.1 Evidence Retrieval

In evidence retrieval, the ’multi-qa-mpnet-base-dot-v1’ model computes claim and document text em-
beddings at the passage level. Based on S-BERT and the MPNet architecture, the model is trained on a
QA dataset and encodes text into a 768-dimensional vector. The top K passages obtained from semantic
search are re-ranked based on relevancy to the claim text and concatenated to one text.

The reason for this first stage of the model is the length of the document. The Factify 2 dataset
was created so that documents are complete, very long news articles. The average length of words per
class can be seen in Figure 3. Encoding such a long text with a CLIP encoder (which takes a maximum
of 77 tokens) could lead to a loss of information and context and embedding of the tokens, which are
unimportant for veracity prediction. Even using a different encoder that can encode more tokens could
lead to a loss of information, as such a long text is supposed to be embedded. On the other hand, encoding
each token of such a document with the Word2Vec model would lead to enormous representation.

5.2.2 Feature extraction

The embedding layer comprises a cross-modal encoder and an unimodal text encoder. This architecture
leverages text-to-text and cross-modal interactions, enhancing multimodal semantic relatedness. The
cross-modal encoder utilizes a pre-trained CLIP model (a ViT-B/32 variant). It encodes text inputs
(claim text, evidentiary passage, and two images OCR text) and image inputs (claim image and document
image), respectively, which are then concatenated into a 6 Ö 512 matrix as a single input to the subsequent
transformer encoder. The pre-trained Word2vec model (a Google News 300 variant) is adopted as an
unimodal text encoder. It encodes the concatenated text sequence of claim and document evidentiary
passage text and obtains a 300-dimensional feature vector for each token. Zero-padding is applied to
match the longest sentence in the training set. Neither the pre-trained CLIP nor Word2Vec embedding
models were fine-tuned.

5.2.3 Cross-modal Veracity Prediction

The veracity prediction component relies on two Transformer Encoders (TE) with self-attention mecha-
nisms. Cross-modal and unimodal inputs are processed through separate transformer encoders, and the
outputs are concatenated before passing through an MLP classifier for five-category prediction. The clas-
sifier consists of 3 MLP layers, and the number of nodes per layer is set to 3072, 1024, and 5, respectively.
A dropout and ReLU activations are applied between the MLP layers.
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Figure 3: Boxplots of text length distribution of all categories in claim text (left) and document text
(right) (Verschuuren et al., 2023).

Figure 4: Logically General System Architecture (Verschuuren et al., 2023).

5.2.4 Implementation Details

Experiments in the paper include variations in evidence retrieval, passage length, passage ranking granu-
larity, and alignment strategies with SBERT and CLIP. The best approach, presented on the leaderboard
with a test set of Factify 2, consists of the top 5 sentences sorted by the SBERT-QA model and selected
as evidentiary passages in this setting. For Word2Vec embeddings, the longest sentence in the training
set has 638 tokens. Two transformer encoders are employed with an empirical setting of four heads
in two multi-head attention blocks. No information was given in the paper about the dimension of a
feed-forward layer or dropout or activation layer for the transformer, so we assumed the default values
for the Transformer encoder used in pytorch implementation (2048 feed-forward dimension, 0.1 dropout,
ReLU activation). According to the paper, the model was trained up to 80 epochs with early stopping on
minimum validation loss by minimizing the cross-entropy loss function. The adaptive AdamW optimizer
with an initial learning rate of γ = 1 × 10−4 and epsilon ε = 1 × 10−8 was used for optimization. The
batch size was Nbatch = 16. Early stopping patience was set to 5. A linear decreasing learning rate
scheduler was used, including the first Nsteps = 438 warming-up training steps, during which the learning
rate increased linearly to the chosen learning rate.
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It was mentioned in the paper that the presented results were obtained after 20 epochs of training.
Our replicated results were obtained after eight epochs of training. The evaluations in the table below
were done using random seed 42. The experiments were run on a local Linux server (Ubuntu 20.04.3 LTS)
with 4 NVIDIA RTX 3090 GPUs, AMD Ryzen Threadripper 3970X 32-Core CPU, and 128GB DDR4.
From the available resources, we used 1 GPU. The experiment had been run one more time with a seed
49 and the average F1 score for the dataset was 77.60 after 9 epochs. This suggests that the model is
robust.

Support
Text

Support
Multimodal

Insufficient
Text

Insufficient
Multimodal

Refute Final

Logically paper 80.38% 90.51% 84.39% 85.63% 98.51% 78.97%
Replication 83.00% 90.19% 81.98% 81.89% 98.02% 77.96%

Table 3: Category-wise and overall weighted average F1 score for baseline model on test set of Factify 2
reported in (Suryavardan et al., 2023a).

6 Insights and Discussion

In this study, we successfully replicated both the baseline and Logically team’s models, obtaining results
that closely align with the reported outcomes in the respective papers. The baseline model yielded a
result of 63.37%, which closely resembles the reported 64.99%, while the replication of the Logically
team’s model produced a result of 77.96%, showing a high degree of similarity to the reported 78.97%.
Any minor discrepancies observed can be attributed to randomness, as the papers did not specify the
random seed used during training, and nuanced variations in the model configurations left unmentioned
in the papers.

Our successful replication underscores the robustness of these models and highlights the importance
of transparency in research. The availability of code for the Logically team’s model enabled further
exploration and comparison, fostering a collaborative research environment.

Looking ahead, with access to the Logically team’s code, we aim to contribute to the scientific com-
munity by publishing our findings. This will reinforce the reproducibility of results and provide a deeper
understanding of the intricacies involved in the multimodal entailment task. Our study emphasizes the
significance of open science practices, ensuring that research findings can be scrutinized, replicated, and
built upon to advance knowledge in the field.

In conclusion, this endeavor serves as a testament to the collaborative nature of scientific inquiry,
emphasizing the importance of code availability and transparent reporting for fostering reproducibility
and progress in multimodal entailment research.
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Abstract

Efficient model training approaches that enable task-specific learning without training the entire
model have been the focus of multiple works. One such effort is the development of PromptTuning,
a technique designed to train soft prompts for individual tasks. By extending the PromptTuning
paper, a Soft Prompt Transfer approach was developed that exploits the ability to transfer
knowledge between tasks. This study replicates the methods outlined in the SPoT paper (Vu et al.,
2022). Our investigation reveals the positive impact of inter-task prompt transfer on downstream
tasks, demonstrating improved performance compared to the original PromptTuning. To
assess the broader applicability of the approach, an analysis of impacts is conducted using four
source tasks and three target tasks. This analysis not only measures the efficiency of knowledge
transfer between various tasks but also evaluates the adaptability of the method across high and
low-resource settings.

1 Introduction

In recent years, there has been a rapid development of large language models (LLMs), characterized by
an increase in size, requiring significant computational resources for training. Their model capacity has
accompanied this growth in model size and enhances their ability to solve many natural language processing
(NLP) tasks. Most models have achieved state-of-the-art results on various NLP benchmarks, prompting
the emergence of diverse methodologies, such as efficient fine-tuning aimed at continual improvement.

Emerging models are not exclusively developed for addressing a single task but demonstrate the
capability to tackle a broader spectrum of tasks (Chung et al., 2022). These tasks include question
answering, natural language inference (NLI), sentiment analysis, etc. Furthermore, these models can
benefit from additional fine-tuning on diverse NLP benchmarks, highlighting the importance of parameter-
efficient fine-tuning methods, which facilitate fine-tuning with fewer trainable parameters and, as a result,
reduce computational demands.

A specific category of the parameter efficient fine-tuning (PEFT) methods involves fine-tuning through
soft prompts, in which additional trainable parameters are incorporated into the model, and only these
parameters are further trained, leaving the rest of the model frozen. Soft prompts are represented by
additional embeddings added to the model, used for improving the model performance. These approaches
achieve comparable results with minimal increase in trainable parameters. An example is PromptTuning
(Lester et al., 2021), in which a task-oriented prompt is added for each downstream task, and only these
prompts are fine-tuned.

Our study focuses on applying PromptTuning for fine-tuning the T5 language model and analyzing
its impact on the GLUE and SuperGLUE benchmarks. We aim to replicate the results reported by Vu
et al. (2022), who focused on applying prompt-tuning within the context of task transfer in the SPoT
paper. PromptTuning, as investigated in our study, is a promising avenue for performance improvement
on the target task, especially in the context of SPoT (Soft Prompt Transfer).

In our replication study, we improved PromptTuning by employing intermediate steps using the
SPoT approach and evaluated its performance on the GLUE and SuperGLUE benchmarks. SPoT first
learns a prompt on a single or mixture of source tasks and then uses the trained prompts to initialize the
prompt for target tasks, on which the performance is evaluated. For GLUE and SuperGLUE benchmarks,
we employed two single tasks (MNLi and SQuAD) and a mixture of 7 NLI tasks. Additionally, we utilized
a task transferability approach that includes four source tasks (MNLI, QQP, SQuAD, SST-2) and three
target tasks (BoolQ, CoLA, MRPC). This analysis aims to contribute to understanding the effectiveness
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of prompt-tuning within the broader context of task transferability and its implications for downstream
NLP tasks.

2 Related Work

Language Models. The language models (LM) landscape has witnessed rapid and substantial develop-
ment, enhancing their proficiency in addressing diverse tasks. This progress has been instrumental in
shaping the attention method and transformer architecture, as evidenced by prior research (Vaswani et al.,
2017).

Benchmark models like BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) have emerged,
representing cutting-edge solutions for many NLP tasks. These models have demonstrated the effectiveness
of pre-trained language representations in capturing contextual information, thereby achieving remarkable
performance in downstream applications.

In 2019, the introduction of the T5 model (Raffel et al., 2020) marked a notable milestone. Unlike its
predecessors, T5 is a sequence-to-sequence model where both the input and output are in textual form.
This departure from traditional BERT-style models, which typically produce a class or span as output,
underscores the versatility of T5.

Building upon the foundation laid by T5, Flan-T5 (Chung et al., 2022) represents an advancement.
This model inherits the sequence-to-sequence paradigm and performs better than its predecessor. The
development of Flan-T5 involved training on an extensive dataset comprising 473 datasets and tackling
1837 diverse tasks, illustrating its adaptability and effectiveness across a wide spectrum of NLP challenges.

Parameter Efficient Fine-Tuning. The increasing number of parameters in contemporary language
models poses a significant challenge when fine-tuning them for downstream tasks. To address this challenge,
researchers have explored various techniques falling under the Parameter Efficient Fine-Tuning (PEFT)
methods, aiming to reduce the computational demand of fine-tuning without compromising performance.
Currently, there are a large number of PEFT methods, and they can be divided into five categories:
additive, unified, reparametrized, hybrid, and partial fine-tuning (Xu et al., 2023).

Reparametrized methods, a prominent subset of PEFT, leverage low-rank transformations to diminish
the number of trainable parameters while preserving the ability to work with high-dimensional matrices.
Noteworthy examples in this category include LoRA (Hu et al., 2021), AdaLoRA (Zhang et al., 2023)
or QLoRA (Dettmers et al., 2023). These methods have gained prominence for their effectiveness in
achieving parameter efficiency during fine-tuning.

In addition to reparametrized methods, additive fine-tuning techniques have emerged as another influ-
ential category within PEFT. In these approaches, trainable parameters are introduced and added to the
model while the rest remains frozen. Examples of additive fine-tuning methods include Adapters (Houlsby
et al., 2019), PromptTuning (Lester et al., 2021), Prefix-Tuning (Li and Liang, 2021), as well as the
derived SPoT (Vu et al., 2022) and Attempt (Asai et al., 2022).

In the context of additive fine-tuning, PromptTuning (Lester et al., 2021) represents a method
that incorporates additional information to condition the model during the generation process. This
additional information is in the form of an added embedding layer to the base model, where only this
embedding undergoes training during the fine-tuning process, and the rest of the model keeps frozen.
PromptTuning builds upon the concept of prompting techniques, commonly employed only during
inference to introduce extra information to accomplish the desired task.

Task Transferability in NLP. Numerous studies have been conducted to analyze and predict the
transferability of tasks within the realm of NLP (Bingel and Søgaard, 2017; Vu et al., 2020; Poth et al.,
2021). These investigations delve into the intricate dynamic of transferring knowledge between various
NLP tasks. One key finding highlighted in existing research is the efficacy of transferring knowledge from
tasks with resource-rich data in the source domain (Phang et al., 2018).

The prevailing methodologies in these studies often revolve around using embeddings extracted from
the input text. Additionally, researchers explore alternative approaches, such as those based on adapters,
to enhance the understanding of task transferability. While these efforts have significantly contributed to
our understanding, there is still space for exploring novel techniques and methodologies to improve task
transferability predictions.

Furthermore, recent research has extended the exploration of task transferability into the domain of
prompt-tuning. Investigations have been conducted to analyze the effectiveness of transferring knowledge
through soft prompts across different downstream tasks (Su et al., 2022). This line of inquiry opens up
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Figure 1: An illustration of the PromptTuning (left) and SPoT method (right). Left: Standard
prompt-tuning without the prompt transfer. The Prompt embedding is trained only on a single task.
Right: Prompt transfer between the source and target tasks by initializing the target prompt with the
trained embeddings on the source task.

new avenues for understanding how prompt-based strategies can influence the transferability of knowledge
in NLP.

3 Replicated Method

The replicated method consists of two prompt-tuning steps, where the authors utilize the knowledge
transfer between various NLP tasks. This section describes the standard prompt-tuning approach and
extended version using soft prompt transfer.

3.1 Parameter-Efficient Prompt Tuning

Previous work done by (Brown et al., 2020) demonstrated that the PromptDesign can adapt the
behaviour of frozen GPT-3 through text prompts and improve the overall performance of LLMs. The
PromptDesign formulates each task as a language modeling task, where the pre-trained model remains
frozen during inference. This approach exhibited remarkable performance on several NLP benchmarks
utilizing GPT-3 models. However, it still under-performs traditional model fine-tuning approaches (Lester
et al., 2021).

Following the findings in the PromptDesign, Lester et al. (2021) introduced the parameter efficient
fine-tuning method, PromptTuning, which adds additional information for the model in the form of
token embeddings that are prepended before the input embedding. In the training process, this added
information aims at conditioning the model output to improve the overall performance. Figure 1 left
shows the original implementation of prompt-tuning on the target task.

The authors employed the T5 model with the text-to-text approach for their experiments and fine-tuned
the prompts for several NLP tasks. During the fine-tuning, the pre-trained model is frozen, and only the
added embedding layer is trained, significantly reducing the number of trainable parameters. This brings
the advantage of not fine-tuning the whole model but instead fine-tuning the desired embedding layer
that can be replaced by another prompt embedding, making the model easier to adapt to the downstream
tasks.

3.2 Soft Prompt Transfer

The SPoT paper introduces the prompt transfer between source and target tasks to improve the original
implementation of PromptTuning . Source prompt-tuning is an intermediate step between the pre-
trained model and the standard prompt-tuning on the target task. In both cases, only the prompt is
trained, and the rest of the model is frozen. The SPoT approach consists of two steps.

The source prompt is trained using the target tasks in various settings in the first step. These settings
include a single supervised learning, employing only a single source task, and a multi-task mixture, where
they utilized several datasets in the mixture and trained the model on the created mixture of tasks.
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The second step involves fine-tuning the target prompt on the target task using the previously trained
source prompt. The source prompt constitutes the intermediate representation used to initialize the target
prompt before the final prompt-tuning. The approach benefits from all the advantages of PromptTuning
and adds the benefit of inter-task information transfer, which helps better adapt the target prompt to the
desired task. The two-step approach is in Figure 1 right.

4 Experiments & Results

We conducted experiments to improve the results of PromptTuning using the soft prompt transfer
between source and target tasks. We aimed to show that a prompt pre-trained on a data-rich dataset can
improve results on low-resource datasets. This transfer can then be exploited not only on our selected
datasets but on a wider range of data, even those not originally used to train the model.

4.1 Improving PromptTuning with SPoT

The first experiment focused on improving the original prompt-tuning with the knowledge transfer between
source and target tasks.

4.1.1 Experimental setup

We chose the T5 model for our experiments, focusing on only one size, namely the Base version, which
has 220M parameters. In the original SPoT paper approach, they utilized the LM-adapted version of the
T5-Base model that was found to be much better to optimize based on PromptTuning (Lester et al.,
2021). However, in our experiments, we were unable to transform the T5-Base LM-adapted properly to
the HuggingFace format, thus we used the unofficial version from HuggingFace1. Employing the unofficial
version of the T5-Base LM-adapted model, we observed instability during the training process, resulting
in inferior outcomes compared to the original results reported in the SPoT paper.

4.1.2 Datasets

In the selection process of datasets from the original SPoT paper, we focused primarily on the natural
language inference (NLI) task and question answering (QA) datasets. Table 1 shows a list of the selected
datasets for all our experiments.

We selected two task variants. The first single supervised learning task, in which we chose the MNLI
and SQuAD datasets as the single source task. The second variant is a multi-task mixture, in which
we utilized an NLI task consisting of 7 datasets. We selected these datasets as the data on which we
trained source prompts that were used to initialize the target prompt-tuning. In our experiments, we
considered the same data preprocessing and transformation to sequence-to-sequence format according
to (Raffel et al., 2020).

As evaluation benchmarks, we selected GLUE (Wang et al., 2018) and SuperGLUE (Wang et al.,
2019), as in SPoT, to compare our results against their outcomes. The GLUE contains eight datasets
targeting various tasks such as NLI, sentiment analysis, grammatical acceptability, and paraphrase
detection. However, the original version of GLUE also contains the problematic WNLI (Levesque et al.,
2012) dataset, which we excluded from the evaluation. The second benchmark used to evaluate the trained
source prompts is SuperGLUE, consisting of 8 datasets, including tasks such as QA, NLI, coreference
resolution, or word sense disambiguation.

4.1.3 Training details

We use the steps and training parameters similar to those in the SPoT paper. These steps of the training
process are divided into 2 phases. Only the prompt is trained during both phases without the rest of the
model. The trainable prompt is an embedded input sequence, and in all cases, we use a length of 100
tokens for both source and target prompt-tuning. In all the training runs, we set a fixed number of steps
during which the source and target prompts were trained.

The first phase concerns training the prompt on the source task. For this purpose, we use a number of
steps equal to 218, which is 262,144. There are several different methods of initializing the source prompts,
such as using names of classes in the case of the classification task, using specific text encoded before
training, or using the most commonly used tokens in the dictionary. All source prompts were initialized

1https://huggingface.co/liangtaiwan/t5-v1_1-lm100k-base
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Name Task type Type Size Citation

MNLI NLI source 393K Williams et al., 2018
SQuAD QA source 88K Rajpurkar et al., 2016
NLI
DocNLI NLI source 942K Yin et al., 2021
SNLI NLI source 550K Bowman et al., 2015
MNLI NLI source 393K Williams et al., 2018
QNLI NLI source 105K Wang et al., 2018
ANLI NLI source 17K Nie et al., 2020
RTE NLI source 2K Dagan et al., 2005
CB NLI source 250 De Marneffe et al., 2019

SuperGLUE Wang et al., 2019
ReCoRD QA target 101K Zhang et al., 2018
MultiRC QA target 27K Khashabi et al., 2018
BoolQ QA target 9K Clark et al., 2019
WiC word sense disambiguation target 5K Pilehvar and Camacho-Collados, 2019
RTE NLI target 2K Dagan et al., 2005
WSC coreference resolution target 554 Levesque et al., 2012
COPA QA target 400 Roemmele et al., 2011
CB NLI target 250 De Marneffe et al., 2019

GLUE Wang et al., 2018
MNLI NLI target 393K Williams et al., 2018
QQP paraphrase detection target 364K Iyer et al., 2017
QNLI NLI target 105K Wang et al., 2018
SST-2 sentiment analysis target 67K Socher et al., 2013
CoLA grammatical acceptability target 9K Warstadt et al., 2019
STS-B semantic similarity target 6K Cer et al., 2017
MRPC paraphrase detection target 4K Dolan and Brockett, 2005
RTE NLI target 2K Dagan et al., 2005

Table 1: The list of datasets used in our experiments of improving PromptTuning with SPoT.

with the most common tokens in the vocabulary, selecting the first 100 tokens to encode and initialize
the incorporated embedding layer with their values. We utilized a learning rate of 0.3, the Adafactor
optimizer, a batch size 32, and a weight decay of 1e−5 as additional parameters. For the mixture of
source tasks with more than 219 records, we utilized the examples-proportional mixing strategy introduced
by Raffel et al. (2020). In contrast to the original implementation, we employed the PyTorch framework
and our implementation of the prompt-tuning method.

Phase two consists of training the target prompt, whereas in this phase, the prompt is initialized
using the prompt trained on the selected source task. The fine-tuning parameters remain the same as for
source prompt-tuning. In contrast, during target tuning, we stored a checkpoint every 500 steps, and
simultaneously, we analyzed the best model every 500 steps based on the validation score of the loss
function. As a result, we considered the best-trained model as the one with the best results on the loss
function.

4.1.4 Effect of SPoT

To evaluate the effect of Soft prompt-tuning and the intermediate step of prompt-tuning the model on the
source task, we utilized several tasks and evaluated them on GLUE and SuperGLUE datasets. In Table 2,
we present our outcomes of the T5-Base and T5-Base LM-adapted in comparison with the results from
the SPoT paper. Additionally, we have also included the results of the original PromptTuning method
as a baseline to compare the effect of soft prompt transfer.

Similarly to the SPoT paper, we reported the results on the validation split as the mean of all metrics
calculated for each dataset from GLUE and SuperGLUE.

Results using T5-Base. Based on the results presented in Table 2, soft prompt transfer in most cases
yields improved results compared to the Baseline, which represents standard prompt-tuning without
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SPoT Ours – T5 Ours – T5-LM

GLUE SuperGLUE GLUE SuperGLUE GLUE SuperGLUE

PromptTuning 81.2 66.6 82.16 65.63 73.81 59.66

MNLI 82.5 72.6 82.97 65.62 58.57 59.82
SQuAD 82.2 72.0 82.89 66.48 74.76 60.92
NLI (7 tasks) 82.6 71.4 82.16 66.70 76.92 59.90

Table 2: Results of the T5-Base and T5-Base LM adapted model prompt-tuned on three source tasks and
evaluated on GLUE and SuperGLUE. The best results for each GLUE and SuperGLUE experiment
are boldfaced.

transfer from other tasks. Notably, the distinctions between standard prompt-tuning and prompt-tuning
with soft prompt transfer remain within the 1% margin. We performed experiments with the same seeds
only once, owing to computational constraints and the required time for each experiment.

The T5-Base model, initially pre-trained on the MNLI task, exhibits the highest level of inter-task
transfer capabilities compared to other pre-trained prompts. Conversely, the mixture of datasets for the
NLI task demonstrated negligible impact, possibly attributed to the dataset diversity within the NLI task.
In this regard, multi-task mixing did not prove to be the optimal soft prompt transfer method for the
GLUE benchmark.

In contrast, SuperGLUE comprises predominantly low-resource datasets in our experiments, charac-
terized by fewer than 10K samples, potentially contributing to its modest mean scores. Unlike the GLUE
benchmark, the mixture of tasks exhibits superior performance to the single-task scenario.

Overall, our experiments with the T5-Base model yielded higher scores for both standard prompt-
tuning and transferring from individual tasks to the GLUE benchmark than the reported results in the
SPoT paper. However, we did not observe an identical impact as in the original implementation, potentially
attributed to factors such as randomness and the influence of the example-proportional mixing strategy,
where we do not necessarily have the same training and validation splits. Additional consideration for
results discrepancies may stem from our implementation in the PyTorch framework and the absence of
the original T5-Base LM-adapted for comparison. We rely instead on the standard T5-Base, recalled by
the SPoT paper authors for its reduced capabilities in terms of knowledge and prompt transfer between
tasks, and the unofficial version of T5-Base LM-adapted.

Results using T5-Base LM-adapted. In our investigation of the T5-Base LM-adapted, we observed
a more notable impact of task transfer compared to the original T5-Base. Notably, the adapted language
model exhibited lower performance than the original T5 model and the results reported in the SPoT paper.
Evident differences emerged in cross-source tasks for the GLUE benchmark, particularly in the MNLI
dataset, where the LM-adapted version achieved approximately 58.6%, contrasting with the Baseline’s
73.8%. These findings underscore the instability in the training process for the adapted language model,
reflecting observations made by Asai et al. (2022). Conversely, the validation results on the SuperGLUE
benchmark are the comparatively low performance from the SPoT Baseline, scoring a 7% reduction.

4.2 Task transferability

With our first experiments, we evaluated the impact of individual datasets and multi-task mixture on
GLUE and SuperGLUE datasets. We identified during this experiment that the added intermediate step
of source prompt-tuning improved the results over performing the target prompt-tuning from scratch. In
this regard, we further explored and analyzed the impact of each dataset utilized in source prompt-tuning
on the selected datasets to leverage rich-data datasets as source and low-resource datasets as a target.
In this manner, we can also investigate what impact datasets with more data can have in transferring
information to datasets with fewer records.

4.2.1 Datasets

To investigate the knowledge transfer between high-resource datasets and those with a low number of
data (less than 10K), we selected four datasets that represent source tasks and three that represent target
tasks with fewer records. We selected MNLI, QQP, SQuAD, and SST-2 as the high-resource datasets on
which we trained the source prompts, with each dataset focused on a different task. This also allows us to
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SPoT Ours

BoolQ CoLA MRPC BoolQ CoLA MRPC

Baseline 73.0 52.9 86.1 77.76 54.89 89.14

MNLI 77.6 54.2 88.4 78.34 54.56 92.29
QQP 75.9 55.6 88.1 77.76 56.40 89.62
SQuAD 76.0 54.9 88.7 79.61 57.80 86.39
SST-2 73.3 52.3 85.6 78.49 53.65 88.35

Table 3: Most of the tasks benefit from the prompt transfer. Baseline shows the results of prompt-tuning
of T5-Base model only on the target task without prompt transfer. Each cell presents the mean of the
metrics for individual target tasks on the validation split. The positive effects of soft prompt transfer are
shown in green.

verify information transfer not only between datasets but also between tasks. As target datasets with less
than 10K records, we selected BoolQ, CoLA, and MPRC. Like the source datasets, each target data
is designed for a different NLP task. More details on the used source and target datasets are shown in
Table 1.

4.2.2 Training details

The training of the source prompt on the selected datasets was performed similarly as in Section 4.1.3.
The number of prompt-tuning steps was 262,144 on each source task. We saved checkpoints of the prompt
at regular intervals and identified the best prompt based on the validation performance, which is then
used to initialize the target prompt. The only difference was in the data we used, where we only focused
on the single supervised learning task and hence data without a multi-task mixture.

Since target datasets contain less data and are considered low-resource, we utilized less training steps,
which we set to 100K on each target task, with a constant saving of the checkpoint every 500 steps, where
the best prompt trained is saved based on the validation performance.

4.2.3 Measuring transferability

The results of the task transferability experiments are shown in Table 3. The table presents mean scores
on the validation split of individual target datasets and the Baseline, which is prompt-tuning of the
selected model on the target task from scratch without using the intermediate step. Our results are based
only on the T5-Base model, as we identified unstable results for the T5 LM-adapted model in previous
experiments.

Results using T5-Base. Table 3, and specifically the Ours section, presents the results we achieved
with the T5-Base model, either on a task fine-tuned from scratch (Baseline) or using soft prompt
transfer between tasks. Based on the data, in most cases, this transfer positively impacted fine-tuning of
the target task. However, this transfer did not improve the results in some cases, especially when using
SST-2 as the source task. In this case, we identified that except for the target BoolQ dataset, the soft
prompt transfer did not improve the results, similar to the findings in the SPoT paper.

Prompt transfer from the SQuAD datasets achieved the best improvement over the BoolQ and
CoLA tasks, specifically by 2 to 3% over the Baseline, but we did not observe this improvement on
MRPC. On the other hand, the prompt pre-trained on the MNLI task reached 92.3% on the MRPC,
improving our results over Baseline by more than 3%.

The transfer outcomes on the BoolQ task demonstrated that almost all source tasks have a positive
effect, except for the QQP task, where we obtained similar results as Baseline.

Comparison with the SPoT paper. To compare the results obtained by our implementation and
those presented in the SPoT paper, we focused on identifying the effect between the individual tasks and
the results we achieved on the target tasks compared to those in SPoT.

Assessing the impact of individual source tasks, our study generally corroborates the positive outcomes
observed in the original paper regarding prompt transfer between tasks. Nevertheless, we note marginal
discrepancies in our findings, particularly in three cases where the transfer failed to improve the outcomes,
aligning with the observations reported in the original paper.
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We consistently achieved superior scores on the validation datasets on nearly all target tasks. However,
an exception arose in the case of the prompt fine-tuned on the source SQuAD dataset and subsequently
transferred to the MRPC task, resulting in lower scores by more than 2%. On the other hand, the best
enhancement occurred in the SST-2 source task and the BoolQ target task, where the T5-Base model
exhibited a score increase of over 5%, contributing to a mean improvement of 1.9%.

5 Conclusion

In this paper, we investigated the effects of transfer learning using soft prompts and attempted to
replicate outcomes achieved in SPoT paper. Through our experiments, we demonstrated that soft prompt
transfer positively affects the target task, leading to enhanced performance compared to conventional
prompt-tuning. Our investigations utilize the T5-Base model, and we note substantial disparities between
our results and those of the T5-Base LM-adapted model. These differences are evident compared to
the original implementation and manifest as instability in the different training cycles. Concurrently, we
observed a notable improvement in transferring knowledge between individual tasks, exceeding 3% in
some cases.

While replicating the SPoT , we delved into the PEFT methods and learned that PEFT methods
could be more efficient than full model fine-tuning from various aspects, such as the number of trainable
parameters. Soft prompt transfer can outperform the full model fine-tuning at the XXL model size. We
also found a positive transfer between tasks, in which prompt transfer provides a gain on most target
tasks.

The prompt-based transfer learning is not limited to single-language datasets but can be extended to
multilingual contexts. An in-depth exploration of the effectiveness of soft prompt transfer in language
transferability tasks is essential to future research, particularly concerning advanced multilingual models.
A key focus should be investigating the impact of soft prompt training in one language and assessing their
transferability to other languages. Moreover, analyzing the potential synergies between language and task
transferability is warranted, examining whether prompt-tuning in one language and on one task could
influence performance across different languages and tasks. The nuanced investigation promises insights
into the intricate dynamics of prompt-based transfer learning across diverse linguistic and task-oriented
scenarios.
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Abstract

In this paper, we present a replication study performed on a multimodal fact-checking model,
originally created by team INO to participate in Factify2 challenge at AAAI 2023. In the repli-
cation process we reimplemented the model and training procedures to our best abilities. We
encountered minor obstacles due to incomplete information in the paper and provided code. Our
results slightly vary from the reported numbers. We observe a moderate difference between the
replicated and original results, with INO achieving 80.80% and us achieving 76.28% (weighted F1
score on the test set). Our study highlights the importance of implementing open science method-
ologies to enhance the reproducibility and advancement of multimodal entailment studies. We
provide the replicated code with results on GitHub, at https://github.com/samuelrevucky/

replication_challenge.

1 Introduction

The DisAI initiative brings together the expertise of the Kempelen Institute of Intelligent Technologies
(KInIT), DFKI, University of Copenhagen, and CERTH with the aim of enhancing the scientific excellence
of KInIT in the fields of AI and language technologies to combat disinformation.

Within the framework of the DisAI initiative, KInIT is hosting a Replication Challenge to provide a
distinctive chance for novice researchers to partner with experts from renowned academic organizations.
This challenge is designed to involve the replication of current studies in various fields such as multilingual
language technologies, multimodal natural language processing, and ethical artificial intelligence with a
primary emphasis on countering disinformation.

Our task in this Replication Challenge is to recreate the approach of team INO on the Factify2
challenge, presented at AAAI 2023 (Suryavardan et al., 2023a). The approach proposed by team INO
(Zhang et al., 2023) uses a structure coherence-based approach with components such as textual feature
similarity, textual semantic similarity, text length and image similarity. The model is trained and tested on
a dataset provided in the competition. The dataset consists of textual and visual data. The architecture
extracts textual features using CLIP, S-BERT and the ROUGE. Extraction of visual features is done via
ResNet50 pre-trained CNN. These components are used for the final classification through a Random
forest classifier. Team INO provided their code publicly.

We were able to replicate the architecture to the scope of the paper. We achieved a noticeably lower
performance than team INO, particularly 76.28% as opposed to 80.80% weighted F1 score. We attribute
this discrepancy to incomplete information about the architecture and implementation details in both
the paper and code, such as the SBERT version or the random seed used in experiments. During the
replication we communicated with the authors to clarify the version of SBERT encoder they have used
in their work.

2 Related Work

Many different models and methods have been utilized in approach to fact-verification and fake news
detection, such as CNNs (Saleh et al., 2021), BERTs (Kaliyar et al., 2021), (Patwa et al., 2021), (Dhankar
et al., 2022), RoBERTA (Zhuang and Zhang, 2022), ResNet (Gao et al., 2021), (Zhang et al., 2023), CLIP
(Radford et al., 2021), ROUGE (Lin, 2004). Factify 1 (Mishra et al., 2022) provided us one of the largest
multimodal fact-verification datasets, with 50k data points and covers news from India and the US,
categorized into Support, Insufficient, and Refute. Following it’s success at AAAI 2022, Factify 2 at AAAI
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2023 released another 50k instances, including data from satirical articles, categorized into 5 categories.
Other than Factify, rather large amount of text-based or multi-modal datasets were created in recent years
in effort to alleviate fact-checking process. FEVER (Thorne et al., 2018) provides manually updated 185k
instances of Wikipedia claims and associated supporting documents, categorised as Support, Refute, or
NotEnoughInfo. The fakeddit (Nakamura et al., 2019) dataset contains one million text+image instances
taken from reddit and labeled into 6 classes. FakeNewsNet (Shu et al., 2020) provides spatiotemporal
and visual data along with news and social context. MOCHEG (Yao et al., 2023) consists of 21,184
assertions, each of which is given a veracity label (support, refute, and not enough information) and an
explanation statement.

3 Task Description

The dataset provided in Factify 2 comprises of 50000 samples evenly distributed over 5 categories, which
will be described shortly. It uses a 70:15:15 split into training, validation and test sets respectively.
The dataset consists of claim-document pairs and is a combination of data from Twitter, fact checking
websites and satirical news websites.

The extraction on claims was done from tweets of Hindustan Times, ANI, ABC and CNN, with their
corresponding documents extracted from the news articles linked to the tweets. Based on metrics like
textual and image similarity, the collected samples were classified into the Support and Neutral categories.
For the collection of refute samples, fact checking websites such as Snopes, Factly, and Boom were used,
selecting the fake-news as the claim and the article contents as the corresponding document.

Compared to Factify 1 dataset, this iteration had data scraped from satirical websites i.e. Fauxy
and EmpireNews as well. These articles were fake but formulated such that it seems real to the reader.
Therefore they were added to the support category. By scraping images via searching for the headlines
of the articles multimodality of the claims was obtained.

The Factify challenge focuses on detecting fake news through multimodal means. It consists of veri-
fying claims’ authenticity by assessing if they align with reliable information sources – documents. This
approach recognizes that fact-checking requires thoroughly evaluating textual and visual content.

Every sample includes a claim requiring verification, alongside a supporting document utilized for
assessing its accuracy through a comparison or entailment-based method. Both the claim and document
incorporate textual and visual data, facilitating a multi-modal approach for verifying facts.

The following five categories are defined to describe the entailment of the claim and document: Sup-
port Text, Support Multimodal, Insufficient Text, Insufficient Multimodal, and Refute. The specific de-
scription of these categories is as follows:

� Support Text: the textual data for the claim and document are entailed but their images are not
entailed.

� Support Multimodal: the textual data is entailed and the images are also similar for the claim
and document.

� Insufficient Text: the textual data is not entailed but the claim and document may have several
common words, and the images are not entailed.

� Insufficient Multimodal: the claim and document text are not entailed but they may have
common words and the images are also entailed in this case.

� Refute: The document text and image both contradict or refute the claim text and image, thus,
indicating that the given claim is false.

Examples are shown in Figure 1.

4 Replicated Method

4.1 Architecture Description

Team INO designed a structure coherence-based fact-checking method in which structure-coherence be-
tween claims and documents is computed. They extract the following four aspects to reflect structure
coherence: literal text similarity, semantic text similarity, text length, and image similarity. In partic-
ular, they use ROUGE to extract the literal text similarity, two pre-trained models CLIP and SBERT
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Figure 1: Examples of all the 5 categories from Suryavardan et al. (2023b). The document text supports
the claim text in images (a) and (b), it is insufficient in images (d) and (e), while it refutes the claim in
images (c) and f). The claim and document images are entailed in images (a) and (d) and not entailed
in images (b) and (e).

to extract the semantic text similarity, text length is computed, and finally ResNet50 is utilized to ex-
tract image similarity. All the obtained features are normalized and spliced before being passed into the
random forest classifier for the final classification result. The architecture is shown in Figure 2.

Figure 2: The overall architecture
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4.2 Text Feature Extraction

ROUGE is used in the literal text similarity extraction process. Particularly, out of 3 values that ROUGE
returns (precision, recall, F1 score), recall is used. This is observable in the provided code 1 but omitted
in the paper. Next, claim and document lengths are computed.

To extract semantic similarity, INO uses two approaches. One utilizes an SBERT pre-trained trans-
former to extract embeddings from claim and document and further applying cosine similarity on them.
Important to note is the fact that there is no mention of the particular variant of the SBERT model
neither in the paper nor the code. After contacting the authors in this regard they clarified the use of
‘paraphrase-MiniLM-L6-v2’ variant.

Furthermore CLIP model is used, particularly the ‘clip-ViT-B-32-multilingual-v1’ according to the
code, to extract claim and document features. The obtained 512-dimensional vectors are concatenated
and put into an MLP classifier. The classification is done into three categories: support (0), insufficient
(1), and refute (2). The MLP is first trained on the train dataset and then is utilized to predict the
3-category labels for the train set, validation set, and test set as well.

4.3 Image Feature Extraction

Extraction of image similarity uses pre-trained ResNet50 convolutional network. Obtained features are
then compared using cosine similarity resulting in the final feature.

4.4 Implementation Details

Multiple variations of the architecture were experimented with by INO in the development process, as well
as various ablation experiments discussed in 4.5. They divide the exploration into two parts: 1) selection
of text pre-training models; 2) ways of using the CLIP. SimCSE, RoBERTa, and the text encoder of
CLIP were used to replace Sentence BERT. In addition they also tried replacing the ResNet50 in the
image side of the task by the CLIP image encoder. None of these options surpassed the results of SBERT
and ResNet50. In the latter, three feature combination methods to use the CLIP module were tried: 1)
concatenate the text feature vector into the MLP layer for the three-category classification, which was
eventually chosen for the final design; 2) concatenate the image feature vector into the MLP layer for the
three-category classification; 3) concatenate all the image and text feature vectors, and input them into
the MLP layer for the five-category classification.

For the MLP layer in the CLIP Module, a network with one hidden layer of size 100 and Adam
estimator is used. The network was trained in 20 epochs. For the final random forest classifier, following
settings were used: number of estimators = 500; max depth = 40; random state = 16. As the particular
variant of SBERT used in the text feature extraction is never mentioned by INO, we compared multiple
variants, out of which ‘all-MiniLM-L6-v2’ gave closest results to the samples presented in INO’s code.
Experiments were conducted using the ‘all-MiniLM-L6-v2’ and ‘paraphrase-MiniLM-L6-v2’.

4.5 Results

During the replication we weren’t able to retrieve images for all samples in the datasets. Specifically, we
missed claim or document images for 162 samples in the train set, 68 samples in the validation set, and
for 81 samples in the test set. These samples were filtered out for further experiments. Our replicated
architecture achieved 76.28% weighted F1 score, while our alternative approach with the ‘all-MiniLM-
L6-v2’ SBERT model achieved 77.28%.

The conducted ablation experiments with original results and our results using two different SBERT
models are shown in Table 1.

5 Conclusion

In this study, we replicated the INO team’s model, achieving similar but slightly lower results to the
original paper. Our model scored a result of 76.28%, contrasting with the 80.8% reported by INO. We
were able to achieve a one percent improvement by using ’all-MiniLM-L6-v2’ SBERT model, resulting in
a score of 77.28%.

1https://github.com/Catrin-baze/INO-of-factify/blob/main/code.ipynb?short_path=35f3de2#L3111
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Model Alternation INO Us (all-MiniLM-L6-v2) Us (paraphrase-MiniLM-L6-v2)
Main Result 0.8080 0.7728 0.7628

Without SBERT 0.7926 0.7602* 0.7602*
Without CLIP 0.7911 0.7058 0.7166

Without ROUGE + length 0.7709 0.7446 0.7425
Without ResNet50 0.6007 0.5962 0.5832

Baseline (SBERT + ResNet50) 0.6664 0.4861 0.4742

Table 1: Ablation experiments showing F1 scores from INO, and our two variants with two SBERT
models. * denotes that values for both variants are the same since SBERT model was omitted in this
experiment.

Possible causes for score differences may lie in the image processing part. This is supported by
three observations. Conducted ablation experiments suggest that the ResNet50 feature accounts for the
negative score difference, since when omitted, our results almost align with INO’s. This is visible in Table
1. Next, we were not able to retrieve images for all samples, as mentioned in 4.5. Finally, team INO
doesn’t provide parts of code where they extracted image features using ResNet50. Although following
the exact settings mentioned in the paper, we observed minor discrepancy between our features obtained
from ResNet50 and values from samples shown in team INO’s code.

Our findings indicate that certain configurations might be incomplete in both the paper and code.
Nonetheless, it is noteworthy that team INO made their code publicly available. Ultimately, this initiative
underscores the collaborative essence of scientific exploration, highlighting the significance of transparent
reporting and code accessibility in advancing reproducibility and progress in multimodal entailment
research.
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Abstract

We were trying to replicate the results of the original BERT paper (Devlin et al., 2018) on the
General Language Understanding Evaluation (GLUE) benchmark tasks. The BERT model was
fine-tuned on GLUE datasets using the same methodology, and its performance was evaluated.
The results closely match those reported in the original paper, affirming BERT’s effectiveness
across diverse NLP tasks.

1 Introduction

BERT is a pre-trained language model that has demonstrated remarkable performance gains on a variety
of natural language processing (NLP) tasks. The GLUE benchmark provides a comprehensive evaluation
of the ability of models to understand different aspects of language. We discuss this in more detail in
subsection 2.1.

The replication process involved fine-tuning the BERT model on the various GLUE datasets and
evaluating its performance. We followed the procedures outlined in the original paper to ensure that we
obtained results as close as possible to those in the paper. Despite various challenges we encountered, our
replication results closely match the performance metrics reported in the original paper for the GLUE
tasks we selected.

2 Related Work

As previously stated, the primary source of information for this work was the BERT paper. This section
provides a brief summary of it.

2.1 Bidirectional Encoder Representations from Transformers (BERT)

In the original BERT paper (Devlin et al., 2018), the authors – Jacob Devlin, Ming-Wei Chang, Kenton
Lee and Kristina Toutanova - identified a critical limitation of standard language models: their unidirec-
tional architecture, which prevents effective pre-training. To overcome this constraint, they introduced
Bidirectional Encoder Representations from Transformers (BERT), an innovative model designed to
pretrain deep bidirectional representations from unlabelled text. Unlike previous language representation
models, BERT considers both left and right context across all layers, making it a unique advance in the
field of language modelling.

BERT addresses the unidirectionality constraint through a unique pre-training mechanism known as
the ’masked language model’ (MLM). This technique involves randomly masking tokens from the input
and asking the model to predict the original vocabulary of these masked words based solely on the
contextual cues provided by the surrounding words. By allowing the integration of both left and right
contexts, MLM facilitates the pre-training of deep bidirectional transformers, thus broadening the scope
of linguistic understanding.

The bidirectional nature of the pre-trained BERT model simplifies the fine-tuning process, requiring
only the addition of a single output layer to achieve exceptional performance across a wide range of tasks.
This adaptability allows researchers and practitioners to seamlessly tailor BERT to specific applications,
including but not limited to sentence-level semantics and sentiment analysis. In particular, the authors
present extensive fine-tuning results on 11 NLP tasks, including the GLUE benchmark tasks, SQuAD
v1.1, SQuAD v2.0 and SWAG. Process of pre-training and fine-tuning is illustrated on the Figure 1.
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Figure 1: Illustration of the pre-training / fine-tuning approach. Three different downstream NLP tasks,
MNLI, NER, and SQuAD, are all solved with the same pre-trained language model, by fine-tuning on
the specific task. Image credit: Devlin et al. (2018)

Given our focus on replicating the GLUE tasks, we discuss this collection of diverse tasks in more
detail in the 2.2 subsection. The comprehensive evaluation provided by the GLUE benchmark underlines
BERT’s versatility and effectiveness across different linguistic challenges. By simplifying the model de-
velopment pipeline, BERT accelerates progress in Natural Language Processing research and application
development. Its importance as a foundational tool in the NLP landscape cannot be overstated, providing
a flexible and efficient solution for modelling linguistic phenomena and addressing real-world challenges
across multiple domains.

2.2 GLUE

The General Language Understanding Evaluation benchmark (Wang et al., 2018) provides a collection of
different natural language understanding tasks. Designed to capture the breadth of linguistic phenomena,
GLUE consists of a series of nine different tasks, each representing a unique dimension of language
comprehension and reasoning. These tasks cover various domains such as sentence-level semantics, textual
entailment, paraphrase detection and sentiment analysis, providing a comprehensive evaluation of a
model’s linguistic capabilities.

Each GLUE task is carefully designed to capture different aspects of language understanding, starting
from binary classification tasks such as sentiment analysis (SST-2, CoLA) and paraphrase detection
(MRPC), to more complex classification tasks such as Multi-Genre Natural Language Inference (MNLI)
and Recognizing Textual Entailment (RTE). In addition, GLUE includes tasks that evaluate semantic
similarity between sentence pairs (STS-B) and natural language inference between question-answer pairs
(QNLI), further enriching the evaluation of the language model.

By taking advantage of the wide range of tasks embedded in GLUE, researchers and practitioners can
accurately evaluate the ability of language models to generalise and maintain robustness across a wide
range of linguistic phenomena. GLUE will become a fundamental benchmark, facilitating comparative
analysis, supporting model selection and driving progress in the field of natural language processing.
This in turn will encourage the development of more sophisticated and advanced models of language
understanding.

The authors undertook the task of fine-tuning the pre-trained BERT model across all GLUE tasks,
with the exception of WNLI due to its particular difficulties1. Results from the paper are illustrated on
Figure 2. For a fuller explanation of the individual tasks included in GLUE, a detailed description is
provided below:

� MNLI (Multi-Genre Natural Language Inference): A large-scale, crowdsourced entailment classi-
fication task. Given a pair of sentences, the goal is to predict whether the second sentence is an
entailment, contradiction, or neutral with respect to the first one (Williams et al., 2018).

1See (12) in https://gluebenchmark.com/faq
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� QQP (Quora Question Pairs): A binary classification task where the goal is to determine if two
questions asked on Quora are semantically equivalent (Chen et al., 2018).

� QNLI (Question Natural Language Inference): A version of the Stanford Question Answering
Dataset (Rajpurkar et al., 2016), which has been converted to a binary classification task (Wang
et al., 2018a). The positive examples are (question, sentence) pairs which do contain the correct
answer, and the negative examples are (question, sentence) from the same paragraph which do not
contain the answer.

� SST-2 (Stanford Sentiment Treebank): A binary single-sentence classification task consisting of
sentences extracted from movie reviews with human annotations of their sentiment (Socher et al.,
2013).

� CoLA (Corpus of Linguistic Acceptability): A binary single-sentence classification task where the
goal is to predict whether an English sentence is linguistically ”acceptable” or not (Warstadt et al.,
2019)

� STS-B (Semantic Textual Similarity Benchmark): A collection of sentence pairs drawn from news
headlines and other sources (Cer et al., 2017). They were annotated with a score from 1 to 5
denoting how similar the two sentences are in terms of semantic meaning.

� MRPC (Microsoft Research Paraphrase Corpus): Consists of sentence pairs automatically ex-
tracted from online news sources, with human annotations for whether the sentences in the pair are
semantically equivalent (Dolan and Brockett, 2005).

� RTE (Recognizing Textual Entailment): A binary entailment task similar to MNLI, but with much
less training data (Bentivogli et al., 2009).

Figure 2: Results from the paper. Image credit: Devlin et al. (2018)

3 Experiments

In this section, we detail the experimental setup used to replicate the results presented in the original
BERT paper for a subset of the GLUE benchmark tasks.

3.1 Resources

The original paper presented eight GLUE tasks, which we aimed to replicate. There was optimism from
the beginning that we could pull that off, because the authors themselves claimed “all of the results in
the paper can be replicated in at most 1 hour on a single Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model”. However, we soon realized that obtaining a sufficiently powerful
GPU or Cloud TPU for the assignment was not feasible. Google Colab was initially considered as an
option, but due to limited computing units, we had to settle for a single GeForce RTX 2060 graphics
card with 1920 CUDA cores and 6GB of CUDA memory on the local machine.

3.2 Selection of GLUE Tasks

Due to resource limitations, we replicated only a subset of the tasks which have a ”reasonable” number
of training examples – RTE, MRPC, STS-B, and CoLA. The remaining tasks (MNLI, QQP, and SST-2)
have roughly an order of magnitude more training examples, as shown in Table 1. The table also displays
the computational time required for fine-tuning using a single learning rate on our machine.
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Table 1: Number of Training Examples for GLUE Tasks

Task MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

# Examples 392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

Time N/A N/A N/A N/A ∼ 7h ∼ 5h ∼ 2h ∼ 1.5h

3.3 Implementation Details

The fine-tuning procedure was implemented using native PyTorch libraries. We utilized the Hugging
Face Transformers library for pre-trained model access and efficient data processing. The pre-trained
model chosen was google-bert/bert-base-uncased. Although a larger model is available, we chose the
base model for convenience and as a starting point. For training, we used PyTorch TrainingArguments

and Trainer classes. Both interfaces provide a user-friendly way to train and evaluate models, while
abstracting away the complexities of optimization, batching, and monitoring. As newcomers to the field,
we were therefore able to seamlessly integrate the fine-tuning workflow into our replication process. The
authors of the paper state they used “batch size of 32 and fine-tune for 3 epochs over the data for all
GLUE tasks. For each task, we selected the best fine-tuning learning rate (among 5e-5, 4e-5, 3e-5, and 2e-
5)”. We used the same parameters except for the batch size, which we had to reduce to 16 due to CUDA
memory constraints. To evaluate the results, we utilized the evaluate library and a custom function to
calculate accuracy. The compute metrics 1 function takes in an eval pred parameter that contains two
arrays: logits and labels. The logits array contains the raw output scores or probabilities predicted
by the model for each potential class, while the labels array represents the true classes to which each
data point belongs. The argmax function deduces the predicted class for each data point by selecting
the class with the highest score. The function should be specified with axis=-1, so it selects the class
exhibiting the highest score among all possible classes for each data point. For the non-binary STS-B
task, we had to adjust the method slightly to use Mean Squared Error (MSE) since the original method
was only suitable for binary tasks. As with many well-known datasets, the test split of the dataset does
not include labels. Therefore, we used the validation split for evaluation.

Listing 1: Evaluation method

def compute metr ics ( eva l p r ed ) :
l o g i t s , l a b e l s = eva l p r ed
p r ed i c t i o n s = np . argmax ( l o g i t s , ax i s==1)
return metr ic . compute ( p r e d i c t i o n s=pred i c t i on s , r e f e r e n c e s=l a b e l s )

3.4 Results

As the authors did not specify the best learning rates for specific tasks, we trained the model at different
learning rates and tried to see how accuracy changes with different learning rates. Table 2 presents
our replicated results for each learning rate alongside the corresponding results reported in the original
BERT paper. The replicated results demonstrate a close correspondence to the original BERT paper for
all chosen GLUE tasks. Although there are minor differences, these can be attributed to the hardware
limitations mentioned earlier, differences in batch size, and evaluation on the validation split instead of
the test split. In the case of the RTE dataset, we obtained better results than those reported in the
paper. However, it is possible that the model learned specific patterns or biases from the validation data
that were not as prominent in the original paper’s test set. This could result in a slight improvement on
the validation set, but it may not necessarily lead to better generalization on unseen data.

Table 2: Replicated GLUE Benchmark Accuracy

Task
Replicated Numbers

BERTBASE5e-5 4e-5 3e-5 2e-5
CoLA 44.3% 46% 46.7% 45.6% 52.1%
STS-B 83.2% 83.4% 82.3% 81.2% 85.8%
MRPC 87.5% 86.7% 86.5% 86.8% 88.9%
RTE 68.9% 62% 67.5% 62.4% 66.4%
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4 Conclusion & Discussion

The important note to take here is the reasoning behind choosing the paper instead of the more specific
DisAI one with much more complexity. Reason number one was our limited knowledge of NLP, so after
careful consideration and discussion with our mentor, we took the road with choosing the best of two
worlds — replicating the numbers from the wildly known paper and diving into the world of fine-tuning
and learning a lot. Regarding the replication process itself, the biggest bottleneck was the unavailability
of necessary hardware. If we were able to obtain it, we could not only replicate other GLUE tasks
or potentially replicate the large model instead of the base one, but we could also iterate much more
efficiently. In larger datasets, we only had one opportunity to run the code, which was not ideal due
to potential errors the program may encounter. We considered manually fine-tuning at a lower level in
native PyTorch, but due to limited iterations, we unfortunately did not pursue this idea.

The results show that the results of the BERT paper are correct, defensible and easy to replicate. The
replication process can be carried out by newcomers to the field, as all the necessary hyperparameters
are mentioned and the process is described in great detail.
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Abstract

In this paper, we conducted a replication study on a multimodal model for fake news detection
called SpotFake, which was published in IEEE BigMM 2019. The original model architecture was
implemented in TensorFlow framework. Our replication was implemented in PyTorch framework.
Additionaly, we implemented dataset processing for two publicaly available datasets and training
procedures according to the methodologies described in the original paper. However, the derived
results are below compared to those stated in the original paper. For the Twitter dataset, our
replication achieved an accuracy of 62.02%, while for the Weibo dataset it reached an accuracy
of 72.59%. In contrast, the original paper reports accuracies of 77.77% for the Twitter dataset
and 89.23% for the Weibo dataset. The replicated code can be found at https://github.com/
Marek-Kajan/SpotFake-Replication-Challenge.

1 Introduction

DisAI project is the collaborative effort involving the Kempelen Institute of Intelligent Technoologies
(KInIT), Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), University of Copenhagen
(UCPH) and The Centre for Research & Technology (CERTH). KInIT recognizes that combating disin-
formation is one of the most important societal challenges today. There’s also a lack of investment in R&I
sector from the private sector in Slovakia with only 0.5% of Slovak’s Gross Domestic Product in 2020
being allocated, placing it at the lower end within the EU. The goal of this project is to improve scientific
excellence of KInIT in AI and language technologies to fight disinformation and enhance research man-
agement and administrative skills at KInIT. The focus areas of this project are Multilingual Language
Technologies, Multimodal Natural Language Processing and Trustworthy Artificial Intelligence.

SpotFake falls into the Multimodal Natural Language Processing focus area. SpotFake was first
presented at IEEE International Conference on Multimedia Big Data (Singhal et al., 2019). The term
fake news is defined by the paper as “to be news articles that are intentionally and verifiably false, and
could mislead readers.” (Allcott and Gentzkow, 2017). Reasons to intentionally mislead readers of such
news are numerous. Readers’ lack of knowledge and neglecting to check the credibility of the sources
are the most common reasons for spread of such news. Such news can quite negatively impact the
public perception. Another reason behind spread of fake news is lack of automated processes for fact
checking. Even now, five years after the publication of the original SpotFake paper, this issue remains
highly relevant.

SpotFake addresses this problem by using a multimodal approach to fake news detection. It takes into
account both text and images to classify social media posts as either fake or real news. In the following
sections, we will examine more closely the methodologies used to create this multimodal framework.

2 Related Work

In 2019, when SpotFake was released, majority of models for fake news detection relied on text and user
metadata to detect accounts that create fake news. Some attempts tried to analyze the writing style,
because this can have a great impact on overall perception of the news. TransR model tried improve fact
checking analysis of the news using Knowledge Graph Embeddings (Lin et al., 2015). Using fake images
is also a common way of spreading fake news. There were models trying to analyze if images were altered
using the metadata information of the image or the image itself. However all of these approaches are
unimodal.
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The researchers behind SpotFake while researching various models for fake news detection were mainly
inspired by two multimodal models, which they later compare SpotFake to. One of them was Event
Adversarial Neural Networks for Multi-Modal Fake News Detection (EANN) (EAN, 2018). This model
uses a Convolutional Neural Network (CNN) (Kim, 2014a) for text embedding into representation vector
and pre-trained VGG-19 on ImageNet (Simonyan and Zisserman, 2015) to extract image representations.
These two vectors were then concatenated and used in two fully connected neural network classifiers for
even discrimination and fake news classification.

The second model they were inspired by was Multimodal Variational Autoencoder for Fake News
Detection (MVAE) (Khattar et al., 2019). This model used bi-directional LSTMs to extract text repre-
sentation. Image representations were extracted by VGG-19. These two vectors were then concatenated
and used in a decoder that tried to reconstruct the original samples. Secondary task of this model was
the fake news detection.

Both of these models share the same problem. That problem is that the fake news detection is
a secondary task. This increases the training complexity, model size overhead and can have negative
impact on generalization of the fake news detection task, as there is a lack of data for the secondary task.
SpotFake solves this by making fake news detection the only task the model solves.

Newer approaches to fake news detection still use similar approaches as SpotFake, trying to combine
multiple modalities to get more accurate results. For example, Fake News Detection model based on
BLIP (FNDB) (Liang, 2023) extracts textual features using XLNet and visual features using VGG-19.
However, these models are pre-trained on single modalities. So in addition it also extracts multimodal
features using BLIP, which is a model pre-trained on text image pairs. This can increase the performance
of the model, because the unimodal feature extractors can miss some details that the multimodal feature
extractor can pick up on.

Another example is the Similarity-Aware Multi-Modal Fake News Detection (SAFE) by Zhou et al.
(2020). The aim of this model is to exploit the relationship between the text and image of the news article
to determine whether the article is fake or real news. Often, fake news articles will use irrelevant images
to attract readers’ attention. Textual features are extracted using the Text-CNN model by Kim (2014b).
Images are processed by a pre-trained image2sentence model (Vinyals et al., 2017), which creates a text
description of the image. These descriptions are then processed using the Text-CNN model by Kim
(2014b).

An ambiguity-aware multimodal fake news detection method CAFE Chen et al. (2022) is another
multimodal model for fake news detection. It first extracts textual features using pre-trained BERT
model (Devlin et al., 2019) and image features using pre-trained ResNet-34 model (He et al., 2015). It
then creates a cross-modality alignment by transformint the text and image embeddings into a shared
space. For this they have a sub-task, which classifies if the two modalities share common semantics, called
semantic correlation (Chen et al., 2022). The CAFE model then fuses the modalities using interaction
matrix and along with the semantic correlation it classifies the pair of text and images as fake or real
news.

3 Task Description

The task at hand involves determining whether a pair of text and image can be classified into one of two
categories: fake or real news. The datasets used in this replication consist of social media posts from
microblogging platforms, where both the image and the text of each post contribute to assessing the
validity of the news they present. Each entry in the dataset has been manually labeled by its creators,
which guides the model in distinguishing between fake and real news. During training, the model learns
the types of images and texts that are commonly used to spread misinformation on these platforms.

While this may seem like a straightforward task, distinguishing between real and fake news is not easy
and poses a significant challenge, even for humans. Those who intentionally spread misinformation often
carefully choose their words and manipulate images to appear as credible as possible. The complexity
is further compounded by the fact that the model relies solely on text and images, without any data
regarding the source of the information.
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4 Methodology

4.1 BERT module

SpotFake is composed of three sub-modules. The first sub-module is the Textual Feature Extractor. This
sub-module extracts contextual text features using pre-trained Biderectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019). BERT aims to represent words in a way that best
captures their semantic meaning and context effectively. The version of BERT used here includes 12
encoding layers. Each layer applies a self-attention mechanism and then feeds the output through a
feed-forward network. The textual features are extracted from the last output layer and then it is passed
through fully connected layer to reduce the vector to final size of 32.

BERT begins by taking a tokenized sentence and converting it into token embeddings. These token
embeddings are learned during pre-training. They also take into account position of each token in the
sequence, because BERT doesn’t use recurrence or convolution, it needs a way to capture the sequential
order of words in a sequence. These token embeddings are then passed through the 12 encoding layers
using a feedforward network. In each encoding layer, Multi-Head Self-Attention Mechanism is applied
to the input of the layer. This mechanism allows each word in a sequence to attend to all other words
simultaneously, calculating attention scores between all pairs of words in a sequence, enabling the model to
capture dependencies between words regardless of their positions in the sequence. The output from these
encoding layers is the encoded representation of the sentence, which is further utilized in the SpotFake
framework.

Figure 1: Diagram of BERT architecture (Sun et al., 2022).

4.2 VGG-19 module

The second sub-module is the Visual Feature Extractor, which utilizes the VGG-19 model pre-trained on
ImageNet dataset. Similarly to the Textual Feature Extractor, the image representations are extracted
from the last output layer, which is then passed through a fully connected layer to reduce the size of the
vector to 32.

VGG-19 takes RGB images of size 244x244 as input. The network consists of 16 convolution layers,
that are activated by ReLU function. These convolution layers are grouped into blocks. After each block,
max pooling is applied to reduce the dimension of the feature maps. The ouput of this block is then
passed through 3 fully connected layers activated by ReLu functions. After each fully connected layer,
droupout with probability of 0.5 is applied to prevent overfitting during training.

Figure 2: Diagram of VGG-19 architecture (Khattar and Quadri, 2022)
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4.3 Multimodal module

Third sub-module is Multimodal Fusion. Here the text and image representations are concatenated,
which then passed through two fully connected layers. The first of the layers is activated by ReLU
function. The second layer is the final output layer activated by a sigmoid function. Output from this
layer is then used to classify the original input into fake and real news.

Figure 3: A schematic diagram of the proposed SpotFake model (Singhal et al., 2019). Value in ()
indicates number of neurons in a layer.

5 Datasets

For SpotFake training, two different publicly available datasets were used. The model was also slightly
tweaked for both of the datasets

5.1 Twitter MediaEval Dataset

This dataset originates from The Verifying Multimedia Use challenge, part of the MediaEval Workshop on
Detection and Visualization of Misleading Content on Twitter (Detection and visualization of misleading
content on Twitter, 2018). It is available in the following GitHub repository https://github.com/

MKLab-ITI/image-verification-corpus. The version used was the one from 2016. The training set
comprises approximately 17,000 unique tweets from the social media platform Twitter of which 9000
tweets are labeled as fake news and 6000 as real news. The test set contains 2000 news tweets. Included
in the dataset are also tweets, that are not written in English language.
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5.2 Weibo Dataset

This dataset consists of real news from Chinese news sources, such as Xinhua News Agency and posts
from a Chinese microblogging platform, called Weibo (Jin et al., 2017). It contains 9527 samples, which
are split into 7531 training samples and 1996 testing samples. It is available at the following GitHub
repository: https://github.com/wangzhuang1911/Weibo-dataset.

Figure 4: Example of tweets from Twitter dataset regarding Boston Marathon bombing (Staff, 2013).
The top image depicts a tweet labeled as fake news while the bottom image depicts a tweet labeled as
real news.

6 Replication Methods

For replicating the SpotFake approach, we chose to employ the PyTorch framework, whereas the original
paper’s model was implemented in TensorFlow. While the original code is available, we chose not to use
it for our implementation. Instead, we endeavored to replicate the model using information solely from
the paper, resorting to consulting the code only when certain details were unclear.

The text underwent minimal pre-processing, which involved fixing the length of the sequence. Using
the BERT tokenizer, the text was tokenized and then trimmed or padded to achieve a desired length of
23 word tokens for the Twitter dataset and 200 character tokens for the Weibo dataset.

As for the images extracted from the dataset, the only pre-processing applied was resizing them to
dimensions of 244x244x3.

The BERT model used in the Textual Feature Extractor was the ’bert-base-uncase’ model, accessible
on Hugging Face. Upon encoding the tokenized text, it yielded a vector of length 768. This vector was
then passed through two fully connected layers. The first layer had a size of 768 and the second layer
had a size of 32. The output of this final layer represented the text.

For the Image Feature Extractor, we employed the VGG-19 model pre-trained on ImageNet from the
PyTorch library. This model encodes the images into a vector of length 4096. Subsequently, this vector is
passed through two fully connected layers with sizes of 2742 and 32 for the Twitter dataset, and through
one fully connected layer with a size of 32 for the Weibo dataset. The resulting vector of length 32 serves
as the final image representation.

The final text and image representation vectors are concatenated into a single vector of size 64, which
is then passed through two fully connected layers with sizes of 35 and 1.

Each fully connected layer is activated by the ReLU activation function, except for the last output
layer used for classification, which is activated by a sigmoid function. Additionally, after each fully
connected layer, a dropout with a probability of 0.4 is applied.

Training was conducted with a batch size of 256 using the Adam optimizer, with early stopping based
on validation accuracy. However, we did not have a separate validation dataset. Similar to the original
code, we utilized the test datasets for validating accuracy.

No hyperparameter tuning was performed. Instead, we adopted the hyperparameters from the paper,
which were determined to be the most effective
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parameters Twitter Weibo
BERT trainable False False
VGG trainable False False

# of hidden layers (text) 2 2
# of neurons in each layer (text) 768, 32 768, 32

# of hidden layers (image) 2 1
# of neurons in each layer (image) 2742, 32 32
# of dense layers (concatenation) 1 32

# of neurons in dense layer (concatenation) 64 64
text length 23 words 200 characters
batch size 256 256
optimizer Adam Adam

learning rate 0.0005 0.001

Table 1: An overview of hyper parameter setting used in SpotFake.

7 Results

The resulting accuracy of our replication is presented in Table 2, showing that our accuracy is notably
lower than that of the original model. Several factors may contribute to this difference. Firstly, the models
used in our replication and the original SpotFake implementation may not be identical. Our replication
was conducted in the PyTorch framework, whereas the original SpotFake model was implemented in
TensorFlow. Additionally, different sources may have been utilized for pre-trained models, and changes
in libraries over time since the original implementation in 2019 could also affect performance.

Another possible factor is the lack of a validation dataset for early stopping during training. We
used the test dataset for validation, which is not considered best practice. However, it appears that the
original source code also followed a similar approach.

Overall, these differences in framework, model sources, and training practices may contribute to the
observed variance in accuracy between our replication and the original model.

Model Twitter accuracy % Weibo accuracy %
SpotFake (Singhal et al., 2019) 77.77 89.23

Replication 62.02 72.59

Table 2: Accuracy results of the original SpotFake model and the replicated one for the Twitter and
Weibo datasets.

8 Conclusion & Discussion

In this study, our attempt to replicate the results of the SpotFake model from the original paper did not
yield the same outcomes. The accuracy we achieved for the two different datasets was 62.02% for the
Twitter dataset and 72.59% for the Weibo dataset, noticeably lower than the original results of 77.77%
for the Twitter dataset and 89.23% for the Weibo dataset. This significant disparity in accuracy between
the original and replicated models may stem from various factors. The original code dates back to 2019,
and since then, there have been substantial changes in libraries and models. Additionally, differences
between TensorFlow and PyTorch frameworks could have played a role. It’s also possible that a small
oversight on our part contributed to this notable discrepancy.

However, it’s important to note that this does not invalidate the original results. Replicating studies is
crucial for advancing cumulative knowledge in a specific field. It allows for the identification of potential
errors, biases, and limitations in methodologies. In cases where replications fail, they can serve as
catalysts for further investigation into the reasons behind the discrepancies. This process deepens our
understanding in the field and fosters collaboration among researchers. Moreover, it underscores the
significance of transparency in research. When research is transparent and replicable, it paves the way
for further examination and advancement in the field.

In conclusion, this highlights the importance of transparency and collaboration in research across all
fields. These principles are essential for ensuring the continuous development and evolution of knowledge.
In the case of our failed replication, further investigation into the reasons behind the discrepancies will
be valuable for advancing our understanding of the topic.

A-56



References

2018. Eann: Event adversarial neural networks for multi-modal fake news detection,. KDD ’18: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Hunt Allcott and Matthew Gentzkow. 2017. Social Media and Fake News in the 2016 Election. Journal
of Economic Perspectives, 31(2):211–236.

Yixuan Chen, Dongsheng Li, Peng Zhang, Jie Sui, Qin Lv, Tun Lu, and li Shang. 2022. Cross-modal
ambiguity learning for multimodal fake news detection. pages 2897–2905.

Detection and visualization of misleading content on Twitter. 2018. Boididou, christina and papadopoulos,
symeon and zampoglou, markos and apostolidis, lazaros and papadopoulou, olga and kompatsiaris,
yiannis. International Journal of Multimedia Information Retrieval, 7(1):71–86.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image
recognition.

Zhiwei Jin, Juan Cao, Han Guo, Yongdong Zhang, and Jiebo Luo. 2017. Multimodal fusion with recurrent
neural networks for rumor detection on microblogs. In Proceedings of the 25th ACM International
Conference on Multimedia, MM ’17, page 795–816, New York, NY, USA. Association for Computing
Machinery.

Anuradha Khattar and Syed Quadri. 2022. “generalization of convolutional network to domain adaptation
network for classification of disaster images on twitter”. Multimedia Tools and Applications, 81.

Dhruv Khattar, Jaipal Singh Goud, Manish Gupta, and Vasudeva Varma. 2019. Mvae: Multimodal
variational autoencoder for fake news detection. In The World Wide Web Conference, WWW ’19,
page 2915–2921, New York, NY, USA. Association for Computing Machinery.

Yoon Kim. 2014a. Convolutional neural networks for sentence classification.

Yoon Kim. 2014b. Convolutional neural networks for sentence classification.

Zhiping Liang. 2023. Fake news detection based on multimodal inputs. Computers, Materials & Continua,
75(2):4519–4534.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI’15, page 2181–2187. AAAI Press.

Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image
recognition.

Shivangi Singhal, Rajiv Ratn Shah, Tanmoy Chakraborty, Ponnurangam Kumaraguru, and Shin’ichi
Satoh. 2019. Spotfake: A multi-modal framework for fake news detection. In 2019 IEEE Fifth Inter-
national Conference on Multimedia Big Data (BigMM), pages 39–47.

CNN Staff. 2013. What we know about the boston bombing and its aftermath. CNN.

Junlin Sun, Yanrong Liu, Jing Cui, and Handong He. 2022. Deep learning-based methods for natural
hazard named entity recognition. Scientific Reports, 12:4598.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2017. Show and tell: Lessons
learned from the 2015 mscoco image captioning challenge. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(4):652–663.

Xinyi Zhou, Jindi Wu, and Reza Zafarani. 2020. Safe: Similarity-aware multi-modal fake news detection.

A-57

https://doi.org/10.1145/3219819.3219903
https://ideas.repec.org/a/aea/jecper/v31y2017i2p211-36.html
https://doi.org/10.1145/3485447.3511968
https://doi.org/10.1145/3485447.3511968
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/s13735-017-0143-x
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3123266.3123454
https://doi.org/10.1145/3123266.3123454
https://doi.org/10.1007/s11042-022-12869-1
https://doi.org/10.1007/s11042-022-12869-1
https://doi.org/10.1145/3308558.3313552
https://doi.org/10.1145/3308558.3313552
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
https://doi.org/10.32604/cmc.2023.037035
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/BigMM.2019.00-44
https://edition.cnn.com/2013/04/18/us/boston-marathon-things-we-know
https://doi.org/10.1038/s41598-022-08667-2
https://doi.org/10.1038/s41598-022-08667-2
https://doi.org/10.1109/tpami.2016.2587640
https://doi.org/10.1109/tpami.2016.2587640
http://arxiv.org/abs/2003.04981


Scaling sentence embeddings with large language models:
A Replication Study
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Abstract

In our paper, we present a replication study focusing on sentence embeddings, especially scaling
them with large language models (LLM) and trying new methods, that could improve their perfor-
mance. The replication process involved a thorough study of the suitable materials, reimplementa-
tion of the code, training procedures and evaluation methodologies described in the original paper.
Results of our process closely match the reported ones, affirming the robustness of used methods.
Minor disparities between replicated and original results can be attributed to factors like subtle
variations in model configurations and randomness. Our research highlights the importance of
embracing open science practices to enhance reproducibility and advance progress in LLMs, espe-
cially their application on sentence embeddings. Replicated code can be accessed at the following
GitHub repository: https://github.com/KristinSas/DISAI_replication_challenge_2024.

1 Introduction

The DisAI project brings together the Kempelen Institute of Intelligent Technologies (KInIT), DFKI,
University of Copenhagen, and CERTH to enhance KInIT’s scientific excellence in artificial intelligence
and language technologies to combat disinformation. As the Slovak research and innovation ecosys-
tem faces challenges, which include a lack of scientific excellence and cooperation between industry and
academia, the main goals of the DisAI project are to strengthen research management, administrative
skills and support for excellent research and to improve the scientific excellence of KInIT in three main
areas of artificial intelligence and language technologies: multilingual language technologies, multimodal
natural language processing, and trustworthy artificial intelligence.

The replication challenge is a part of the DisAI project. The main task is to replicate existing research
in multilingual language technologies, multimodal natural language processing, or trustworthy artificial
intelligence with specialization on disinformation combating.

Our aim in the replication challenge was to reproduce research described in the article called “Scaling
Sentence Embeddings with Large Language Models” (Jiang et al., 2023). It presents a way in which a
model trained for the express purpose of creating sentence embeddings can, in principle, be replaced with
a large language model pre-trained in a much more general and task-agnostic way and which typically has
support for much longer context lengths. The approach is fairly general and could be used in a number of
applications, including disinformation combating. In the following sections, we are going to explore the
details of this article and the different methods introduced by the authors. We are going to present the
results of our replication and the expected contributions to the field of LLM-based sentence embeddings.

2 Related Work

To provide the reader with context, in this section we are going to consider some related works concerning
both sentence embeddings and large language models. This section is closely modelled on Jiang et al.
(2023).

Sentence embeddings: Sentence embeddings involve converting a sentence into a fixed-size vector
that encapsulates its semantic meaning and context. This enables efficient retrieval of similar sentences
based on vector similarity. Recent advancements, such as SimCSE (Gao et al., 2022), have demonstrated
the effectiveness of contrastive learning in generating sentence embeddings using models like BERT, both
in unsupervised and supervised scenarios.
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In the unsupervised setup, SimCSE predicts the input sentence itself from within-batch negatives,
employing various dropout masks (Srivastava et al., 2014). In supervised learning, natural language
inference datasets (see (Conneau et al., 2017; Reimers and Gurevych, 2019)) are utilized to create positive
and negative pairs. Building upon SimCSE’s success, there has been a surge in exploring contrastive
learning based methods. For instance, DiffCSE (Chuang et al., 2022) introduces a replaced token detection
loss into the contrastive learning framework. PromptBERT (Jiang et al., 2022) reveals the potential of
prompts in enhancing BERT’s sentence representation capability.

Furthermore, studies have investigated data augmentation techniques for sentence embeddings using
Large Language Models (LLMs). Approaches like SentenceT5 (ST5) (Ni et al., 2021) leverage the encoder-
decoder structure of models like T5 (Raffel et al., 2020) for generating sentence embeddings, showcasing
improvements through scaling the model’s parameters. However, utilizing LLMs directly for sentence
embedding generation remains an area of active research.

Large Language Models: Recently, Large Language Models (LLMs) (Zhang et al., 2022; Tou-
vron et al., 2023; Chowdhery et al., 2022) have demonstrated remarkable performance across various
natural language processing tasks, benefiting from their substantially larger parameter sizes compared
to previous pretrained language models. LLMs are adept at efficiently acquiring new task capabilities
through in-context learning, leveraging training data as demonstrations (Brown et al., 2020). Remarkably,
LLMs employing in-context learning can tackle intricate tasks such as multitask language understanding
(Hendrycks et al., 2021), commonsense reasoning (Lin et al., 2022), and mathematical problem-solving
(Cobbe et al., 2021) without requiring gradient updates. Scaling up language models further enhances
their performance in these tasks (Hoffmann et al., 2022; Kaplan et al., 2020).

3 Task description and methodology

In this section, we describe different methods introduced by the researchers in their papers. First, we spec-
ify their prompt-based sentence embeddings method called Explicit One word Limitation (PromptEOL)
in section 3.1. Afterwards, we describe two settings: with and without fine-tuning. For the setting with-
out fine-tuning, in section 3.2 we describe the method based on in-context learning and for the setting
with fine-tuning the one based on contrastive learning (section 3.3).

3.1 Explicit One word Limitation (PromptEOL)

The basis for the method they propose was PromptBERT (Jiang et al., 2022), which leverages a prompt-
based method to represent a sentence by feeding the model manually created templates like This sentence:
“ [text] ” means [MASK], where [text] is the placeholder for a sentence and the output vector of [MASK]
token is used as the sentence embedding. This method demonstrates superior results compared to previous
sentence representation methods like averaging the final hidden representations of all tokens or using the
representation of the [CLS] token.

The authors of the replicated paper created a similar method, which uses two modifications, so the
template then looks like this: This sentence: “ [text] ” means in one word: “

First, they added in one word to the prompt to constrain LLMs to embed semantic information into
the next token. Secondly, they incorporated : “ at the end of the template to prevent the model form
generating punctuation as the next token, as This sentence: “ is used to indicate the input of a sentence.
This approach improved results for all OPT models (Zhang et al., 2022) and matched or outperformed
BERT in some tasks.

3.2 In-context Learning

In-context learning is widely utilized as an effective method to help LLMs understand problems. This
method improves comprehension of inputs and outputs by directly adding a few examples to the prompts.
But when addressing the challenge of sentence embeddings, it is essential to independently project sen-
tences into vectors based on their semantic information. To employ in-context learning for sentence
embeddings, the researchers introduce the framework illustrated in Figure 1 to automatically construct
demonstration sets and search for demonstrations, aiming to enhance LLMs’ sentence embeddings.

The goal of this framework is to create sentence-word pairs. To create a dataset for training, the
authors used two different methods, which are described in section 4.1.
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Figure 1: An illustration of in-context learning based sentence embeddings. Green denotes a demon-
stration sentence, while blue denotes the demonstration words. The corresponding colored rectangles
indicate their respective slots in the template.

3.3 Contrastive Learning

Contrastive learning on LLMs has been demonstrated as an efficient way to learn sentence embeddings
(Gao et al., 2022). According to the datasets, it can be divided into unsupervised and supervised setting.
The authors of research focused only on supervised setting, which they trained as follows.

Following Gao et al. (2022), they used SNLI and MNLI datasets. Each sentence xi in these datasets
has a corresponding positive x+

i and hard negative x−
i sentence. First, they added xi into the template

and got hidden states

hi1, ..., hil = LLM(This sentence: ”xi” means in one word: ”)

where l is the number of hidden states. Than they used the last token’s hidden state as its sentence
embedding xi = hil. So the embedding representation for triplet (xi, x

+
i , x

−
i ) is (hi, h

+
i , h

−
i ). The training

objective is then as follows:

li = −log
ecos(hi,h

+
i )/τ∑N

j=1(e
cos(hi,h

+
i )/τ + ecos(hi,h

−
i )/τ)

where N is the batch size and τ is the temperature hyperparameter in contrastive learning.

4 Dataset

4.1 Dataset for in-context learning

For the demonstration set, the authors’ goal was to create sentence and word pairs, where the word can
represent the semantic information of the sentence. They used two methods to generate these pairs.

For the first method, the researchers used ChatGPT and a dataset from the SentEval Toolkit (Conneau
and Kiela, 2018). By querying ChatGPT using the template shown in Figure 1, ChatGPT outputs a
one-word summary for the given sentence. The second method involves using the Oxford dictionary, from
which the authors directly extract words and their corresponding definitions, using them as word-sentence
pairs.

Altogether, they generated 300 pairs, 100 using the first and 200 using the second method. All these
pairs are provided by the authors in Jiang et al. (2023).
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4.2 Dataset for evaluation

Following some previous works (Gao et al., 2022; Jiang et al., 2022), the authors used the SentEval toolkit
(Conneau and Kiela, 2018) to conduct experiments on the STS datasets (these include STS tasks from
2012 – 2016). Sentence pairs in each STS dataset are scored from 0 to 5 to indicate semantic similarity.
Spearman correlation is used as a metric to evaluate the correlation between the cosine similarity of
sentence embeddings and the golden similarity scores.

5 Replicated experiment

In this section, we describe implementation details and look at the original vs. the replicated results.

5.1 Implementation Details

Since we were trying for the best possible replication, we tried to leave as many implementation details
as possible unchanged. For the setting without fine-tuning, we used OPT (Zhang et al., 2022). In the
original article, the authors went up to the 66B parameter version. Due to our computational constraints,
we limited our experiments to models with 125M to 6.7B parameters. We used the template described
in section 3.1 for all models.

For each model, we chose only one demonstration from the collected dataset as their demonstra-
tion in template for evaluation. We also used quantization to 4 bits using bitsandbytes (https:
//huggingface.co/docs/bitsandbytes/main/en/index) with 4-bit normalfloat and double quantiza-
tion. In the original article, the authors mention results with and without quantization (16bit weights).

For the setting with fine-tuning, the researchers used QLoRA (Dettmers et al., 2023) to fine-tune OPT
and LLaMA with contrastive learning. All details can be found in the original article (Jiang et al., 2023).
The authors also make their fine-tuned trained models available at https://huggingface.co/royokong.
Due to our computational constraints, we decided not to replicate the fine-tuning, but rather to use these
already fine-tuned models.

5.2 Results

Comparing the original vs. the replicated results is one of the most important parts of this report and
replication challenge. Detailed results are presented in the tables below.

STS tasks with fine-tuning Table 1 shows the results achieved by fine-tuning with PromptEOL
on the supervised dataset. As we can see, replicated and original results are only a little different (note
that, as stated before, in this part of the replication study, we are actually using models fine-tuned by
the authors of the original paper, so this result is unsurprising). We also added some other models to
compare our results against.

Research Params STS12 STS13 STS14 STS15 STS16 Avg.
Fine-tuning on supervised datasets with contrastive learning

Original 1.3 B 79.01 89.26 84.10 88.30 84.62 85.06
Original 2.7 B 79.49 89.64 84.80 89.51 85.91 85.87
Original 6.7 B 80.14 90.02 84.94 89.78 85.84 86.14

Replicated 1.3 B 78.90 88.93 84.14 88.23 84.97 85.03
Replicated 2.7 B 79.16 89.43 84.78 89.37 85.85 85.72
Replicated 6.7 B 79.98 89.97 84.99 89.60 85.69 86.05

Comparison to other BERT-based methods
SBERT-NLI 220M 72.27 78.46 74.90 80.99 76.25 76.57

SimCSE-RoBERTa 123M 76.53 85.21 80.95 86.03 82.57 82.26
PromptRoBERTa 123M 76.75 85.93 82.28 86.69 82.80 82.9

SGPT 5.8B 74.28 85.35 79.21 85.52 82.54 81.38
ST5-Enc 4.8B 80.10 88.75 84.70 88.86 85.17 85.52

Table 1: Performance of original authors’ method on STS tasks with fine-tuning. SBERT-NLI and
SimCSE-RoBERTa (Gao et al., 2022), PromptRoBERTa (Jiang et al., 2022), SGPT (Muennighoff, 2022),
ST5-Enc (Ni et al., 2021)
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We can also see these results on the Figure 2. Since the lines are very similar and you couldn’t
see them both, we made the replicated one dotted. The Bert prompt and the ST5-Enc had only one
measurement so we decided to plot them as a line.

Figure 2: Performances of OPT PromptEOL (original and replicated) in all STS tasks averaged. Green
and orange lines represent the result of Bert prompt and ST5-Enc.

STS tasks without fine-tuning Table 2 shows the results without fine-tuning. As we can see, the
replicated and the original results are almost the same. Also in this case we added some other models to
compare our results against.

Research Params STS12 STS13 STS14 STS15 STS16 Avg.
Without fine-tuning with in-context learning

Original 125 M 61.02 71.00 59.75 69.67 70.52 66.39
Original 350 M 64.14 72.45 62.58 71.05 70.18 68.08
Original 1.3 B 73.45 82.55 73.11 83.63 80.60 78.67
Original 2.7 B 68.50 84.73 74.62 82.23 80.87 78.19
Original 6.7 B 70.23 84.64 76.08 83.73 82.06 79.35

Replicated 125 M 61.05 71.03 59.75 69.68 70.51 66.4
Replicated 350 M 64.21 72.43 62.57 71.04 70.17 68.08
Replicated 1.3 B 73.46 82.55 73.10 83.62 80.59 78.66
Replicated 2.7 B 68.50 84.72 74.62 82.24 80.87 78.19
Replicated 6.7 B 70.23 84.64 76.08 83.72 82.06 79.35

Comparison to other BERT-based methods
BERT avg. 110M 30.87 59.89 47.73 60.29 63.73 52.5

BERT prompt 110M 60.96 73.83 62.18 71.54 68.68 67.44
ST5-Enc 4.8B 34.97 60.19 47.59 66.40 70.62 55.95

Table 2: Performance of original authors’ method on STS tasks without fine-tuning. BERT avg. (Gao
et al., 2022), BERT prompt (Jiang et al., 2022), ST5-Enc (Ni et al., 2021)

We have also shown the comparison of different models on the figure 3. For both original and replicated
OPT PromprEOL models, we averaged all measurements, i.e. OPT models with 1.3B, 2.7B and 6.7B
parameters.
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Figure 3: Average Spearman correlation on all STS tasks with fine-tuning with different models

6 Conclusion & Discussion

In this study, we successfully replicated the original research, which was focused on exploiting Large
Language Models (LLMs) to improve sentence embeddings. We replicated the original authors’ new
sentence embedding method PromptEOL and shown that the improvement described in the original paper
can be replicated. Furthermore, we also replicated in-context learning, which also improved performance
of the LLMs and led to better results. We obtained results that are very similar to the ones published
in the original paper. Only small differences were spotted in the results and these can be attributed
to randomness. Our successful replication confirms the effectiveness of the methods used to improve
sentence embeddings using LLMs.

In conclusion, our attempt to replicate the article turned out very positive and great. Through our
replication efforts, we have confirmed the result, that were presented in the original article. Our research
emphasizes the importance of open science practices, guaranteeing that research results can be reproduced
and expanded upon to further advance knowledge in the field.
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Wen Li, Wen tau Yih, Yoon Kim, and James Glass. 2022. Diffcse: Difference-based contrastive learning
for sentence embeddings.

A-63

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.10298
http://arxiv.org/abs/2204.10298


Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021.
Training verifiers to solve math word problems.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An evaluation toolkit for universal sentence represen-
tations.
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Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei
Yang. 2021. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. 2023. Llama: Open and efficient foundation language
models.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. Opt:
Open pre-trained transformer language models.

A-64

http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/1803.05449
http://arxiv.org/abs/1803.05449
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2307.16645
http://arxiv.org/abs/2307.16645
http://arxiv.org/abs/2201.04337
http://arxiv.org/abs/2201.04337
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2202.08904
http://arxiv.org/abs/2108.08877
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

	Introduction
	Adapter tuning for NLP
	Experiments
	Experimental settings
	GLUE Benchmark
	Additional architectures

	Results
	Conclusion
	Introduction
	Related Work
	Replicated Methods
	Parameter-Efficient Prompt Tuning
	ATTEMPT – Attentional Mixtures of Soft Prompts

	Implementation 
	Prompt Tuning Implementation
	ATTEMPT Implementation

	Experiments and Results
	Prompt Tuning
	ATTEMPT

	Conclusion
	Introduction
	Related Work
	Task Description
	Dataset
	Dataset Collection

	Replicated Methods
	Baseline
	Logically
	Evidence Retrieval
	Feature extraction
	Cross-modal Veracity Prediction
	Implementation Details


	Insights and Discussion
	Introduction
	Related Work
	Replicated Method
	Parameter-Efficient Prompt Tuning
	Soft Prompt Transfer

	Experiments & Results
	Improving PromptTuning with SPoT 
	Experimental setup
	Datasets
	Training details
	Effect of SPoT 

	Task transferability
	Datasets
	Training details
	Measuring transferability


	Conclusion
	Introduction
	Related Work
	Task Description
	Replicated Method
	Architecture Description
	Text Feature Extraction
	Image Feature Extraction
	Implementation Details
	Results

	Conclusion
	Introduction
	Related Work
	Bidirectional Encoder Representations from Transformers (BERT)
	GLUE

	Experiments
	Resources
	Selection of GLUE Tasks
	Implementation Details
	Results

	Conclusion & Discussion
	Acknowledgement
	Introduction
	Related Work
	Task Description
	Methodology
	BERT module
	VGG-19 module
	Multimodal module

	Datasets
	Twitter MediaEval Dataset
	Weibo Dataset

	Replication Methods
	Results
	Conclusion & Discussion
	Introduction
	Related Work
	Task description and methodology
	Explicit One word Limitation (PromptEOL)
	In-context Learning
	Contrastive Learning

	Dataset
	Dataset for in-context learning
	Dataset for evaluation

	Replicated experiment
	Implementation Details
	Results

	Conclusion & Discussion

